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Abstract

Since its introduction in 2009, Bitcoin has become
the most successful cryptocurrency ever deployed.
However, the currency’s dramatic expansion has also
raised serious concerns about its long-term sustain-
ability: (1) Bitcoin mining dynamics have shifted
away from decentralization, as dedicated hardware
and entry of governments and energy producers has
gradually placed most mining power in the hands
of a select few, and (2) the network’s growth spurt
has come with accompanying, vast amounts of energy
constantly “wasted” solely for the purpose of sustain-
ing the currency.

In this work, we propose SpaceMint, a cryptocur-
rency based on proofs of space instead of wasteful
proofs of work. Mining in SpaceMint is designed to
have low setup and overhead costs, yielding a fairer
reward structure for small and large miners. Miners
in SpaceMint dedicate disk space rather than com-
putation. In our design, we adapt proof-of-space
for the cryptocurrency setting, and propose a new
block chain format and transaction types that pre-
vent attacks that exploit the inexpensiveness of min-
ing (from which alternative non-proof-of-work-based
proposals have suffered). Our prototype shows that
initializing 1 TB for mining takes about a day (a one-
off cost), and miners on average spend just a fraction
of a second per block mined. We also provide a for-
mal game-theoretic analysis modeling SpaceMint as

*In a previous version, this cryptocurrency proposal was
called “Spacecoin” rather than “SpaceMint”, but this has been
changed due to name conflicts.
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an extensive game, and prove that following the pro-
tocol is an equilibrium, thereby arguing for the cur-
rency’s stability and consensus.

1 Introduction

E-cash was first proposed by Chaum [12] in 1983, but
did not see mainstream interest and deployment un-
til the advent of Bitcoin [32] in 2009. Today, with a
market cap of over 6 billion US dollars, Bitcoin has
given a sweeping, unprecedented demonstration that
the time is ripe for cryptocurrencies. Bitcoin moves
millions of dollars in transactions per day, inspired
hundreds of “altcoins” and start-ups [4, 2], and re-
ceives regular popular press coverage (e.g., [7, §]).

Widespread deployment of cryptocurrencies has
the potential to transform the traditionally corpo-
rate, centralized structure of financial systems; and
to facilitate secure micro-payments and micro-loans
reaching rural and developing areas, to small-scale
artists and content creators, and beyond [39,21]. The
block chain structure underlying Bitcoin is consid-
ered a promising tool in areas as diverse as insurance,
stock markets, and land registry [29] B8]. Moreover,
amid concerns about mass surveillance of individuals,
cryptocurrencies may be the financial system most
amenable to respecting civil rights.

However, Bitcoin’s dramatic expansion has pro-
voked serious questions about the currency’s long-
term sustainability, including particular concerns
over the emergence of a “mining oligarchy” controlled
by a handful of powerful (corporate or governmental)



entities, and over the steeply increasing amount of re-
sources being consumed by the Bitcoin network.

Both of these problems spawn from Bitcoin’s block
chain, which provides its mechanism of keeping a
public ledger of transactions. In Bitcoin, members
of the network are rewarded for adding blocks con-
taining transaction information to the block chain.
An essential property of the chain is that all parties
in the network are guaranteed to eventually agree on
the same chain (i.e., reach consensus). Miners in Bit-
coin add blocks by solving computationally difficult
puzzlesE| Accordingly, a Bitcoin block is considered
to be a proof of work [15]: i.e., a proof that a certain
amount of computational resources was invested.

One of the original ideas behind basing Bitcoin
mining on computational power was that anyone
could participate in the network by dedicating their
spare CPU cycles, which incurs little cost since it uses
the idle time of already-existing personal comput-
ers. However, modern Bitcoin mining dynamics have
become starkly different [40]: the network’s mining
clout is concentrated in large-scale mining farms, of-
ten in collaboration with electricity producers. Cur-
rently, mining with your spare CPU cycles will result
in net loss, due to electricity costs: newcomers must
make a rather substantial initial investment in hard-
ware, usually in the form of dedicated ASICs, to enter
the game. This phenomenon is sometimes known as
the mining oligarchy, and it undermines much of the
motivation (stability and security) behind the decen-
tralized system design.

Bitcoin also depletes large amounts of natural re-
sources. The Bitcoin network constantly consumes
electricity at a massive scale, in the order of hun-
dreds of megawatts [34], as it mines a block every 10
minutes or so. Moreover, most mining is currently
done by specialized ASICs, which have no use be-
yond mining Bitcoins. For these reasons, Bitcoin is
considered an “environmental disaster” [22] by some.

To address these issues, we propose SpaceMint,
a cryptocurrency that replaces the costly proofs
of work underlying Bitcoin with proofs of space
(PoSpace) [I7]. In SpaceMint, in order to mine blocks

1Currently, mining a Bitcoin block requires about 265 hash
computations [I].

(and thereby mint coins and confirm transactions),
miners must invest disk space rather than computa-
tional power, and prove to the network that they are
dedicating certain amounts of disk space.

In SpaceMint, miners who dedicate more disk space
have a proportionally higher expectation of success-
fully mining a block and reaping the reward. It is
therefore clear that miners will be incentivized to in-
vest in hard-drive capacity, just as Bitcoin miners
are incentivized to invest in electricity. However, we
highlight three key differences:

1. In SpaceMint, the investment is in the form of
capital expenditure, and the mining process af-
ter hard-drive initialization incurs negligible on-
going monetary and natural-resource cost. In
contrast, in Bitcoin, the mining process requires
perpetual energy expenditure.

2. In Bitcoin, resources are “used up” by mining:
electricity is a depletable resource which once
used is gone; and Bitcoin mining hardware is a
specialized, single-purpose resource that is not
useful for anything once the need for Bitcoin
mining is removed. In contrast, the resource
consumed by SpaceMint is recyclable, in that it
can be used again and again, and multi-purpose,
since hard drives have intrinsic value in their
ability to store useful dataEI

3. Ordinary people have (many) personal devices
with unused disk space available, which can be
repurposed for SpaceMint mining with very low
set-up and maintenance costs. Since mining is
cheap, and even small players get a proportional
fair share of rewards, we argue that we can ex-
pect large amounts of space in the network and
a more distributed, decentralized miner body.

[40] analyzed mining profit vs. invested resources
in modern Bitcoin mining, as shown in Figure
We have added predicted cost and profit curves of
SpaceMint mining, based on our reasoning above.

1.1 Challenges and our contributions

When replacing PoW with PoSpace, there are two
important challenges.

In § @, we argue that specialized storage devices tailored
for SpaceMint mining are unlikely to arise.
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Figure 1: Mining profit vs. invested resources

e Interactive PoSpace: Proof-of-space, as pro-
posed in [I7], is an interactive protocol between
a prover and a verifier, and thus unsuitable for
cryptocurrency settings where each individual in
a decentralized network should be able to behave
as the verifier instead of a single entity.

e Nothing-at-stake problems: When replacing
PoW with a different type of proof that is com-
putationally easy to generate (such as PoSpace),
a series of problems arise which are collectively
known as nothing-at-stake problems [19]. Intu-
itively, because mining is cheap, miners can (1)
mine on multiple chains, and (2) try multiple
blocks per chain, at very little additional costE|
These two problems potentially allow for double-
spending attacks and slow down consensus (de-
tails in .

SpaceMint tackles both of these issues by (1) mod-
ifying PoSpace from [I7] to a non-interactive variant,
and (2) introducing a new block chain structure and
transaction types that prevent miners from taking
advantage of the nothing-at-stake problems.

We also implement and evaluate the modified
PoSpace to demonstrate the effectiveness of our
scheme. Even for space larger than 1 TB, we show
that (1) miners need less than a second to check if
they are likely to “win” and therefore should try gen-
erating the next block, (2) block generation takes
less than 30 seconds, and (3) verifying the valid-
ity of a block takes a fraction of a second. More-
over, these numbers grow very slowly (logarithmi-

3A proof-of-work-based scheme inherently disincentivizes
these behaviors.

cally) with larger space.

Finally, we provide a game-theoretic analysis of
SpaceMint modeled as an extensive game, showing
that adhering to the protocol is an equilibrium for
rational miners (that is, cheating does not pay off),
and we thereby argue the stability and consensus of
SpaceMint. To our knowledge, this is the first analy-
sis of a cryptocurrency formally modeled as an exten-
sive game, with rigorous proofs of equilibrium stabil-
ityE| Our game-theoretic model could also be adapted
to cover other similar cryptocurrencies.

Summary. We believe that designing an energy-
efficient cryptocurrency with a reward structure that
incentivizes decentralization and participation will be
instrumental to realizing the future potential of cryp-
tocurrencies. Our contributions are:

e Cryptocurrency from proofs of space: We mod-
ify PoSpace [I7] for the cryptocurrency setting
and design SpaceMint, a cryptocurrency based
purely on proofs of space, which avoids the ma-
jor drawbacks of existing proof-of-work-based
schemes (§3] and §4)).

o Addressing the “nothing-at-stake” problem: We
propose novel approaches to solving nothing-at-
stake problems that arise in non-proof-of-work-
based cryptocurrencies. Our solutions can be ex-
tended to other cryptocurrencies based on easy-
to-generate proofs (§4).

e FEuvaluation of proof of space: We evaluate our
modified PoSpace in terms of time to initialize
space, time to generate and verify blocks, and
block size (§)).

e Game theory of SpaceMint: We model
SpaceMint as an extensive game, and prove that
adhering to the protocol is an e-sequential Nash
equilibrium. Our analysis holds even against
“selfish-mining” attacks [20] and our extended
analysis also models network unreliability and
clock asynchrony between players (@

4Prior work on equilibria in Bitcoin has given only an infor-
mal treatment of the problem: notably, [28] presents a detailed
informal discussion of equilibrium strategies in Bitcoin.



2 Related Work

Proofs of stake (PoStake). In proof-of-stake-
based cryptocurrencies, the probability that a party
mines the next block corresponds to the fraction of
coins (out of all coins ever minted) that it holds.
While such proofs require minimal physical resources
to generate, PoStake-based cryptocurrency propos-
als to date have been susceptible to nothing-at-stake
attacks. Moreover, a large fraction of coin owners
must actively participate in mining in order to en-
sure security, and this has posed a significant chal-
lenge to PoStake currencies: even in the most popular
PoStake-based currency, Peercoin [27], participation
has fallen below 10%. We note that while the partic-
ipation problem is inherent for PoStake, it does not
apply to PoSpace.

Proofs of secure erasure. Proofs of secure era-
sure (PoSE), introduced by Perito and Tsudik [36],
are another type of proof system related to PoSpace.
Informally, a PoSE allows a space-restricted prover to
convince a verifier that it has erased its memory of
size S. PoSE with small communication complexity
have been constructed by [I8], 26] 9]. In [9], a weaker
variant of PoSE is considered’, where a prover “suc-
ceeds” whenever he has access to a sufficient amount
of space, but must not necessarily have erased it dur-
ing protocol execution. A PoSpace implies a PoSE
(simply run the initialization and execution phase se-
quentially), but the reverse implication is unknown.
The only application of PoSE of which we are aware
was proposed in [36]. In particular, PoSE cannot be
used for any of the applications of PoSpace put for-
ward in [I7], nor for the cryptocurrency proposed in
this paper. We refer to [I7] for a more detailed dis-
cussion on PoSpace vs. PoSE.

Proofs of storage/retrievability. Proofs of stor-
age and proofs of retrievability ([23] 11} 10, 25, [14]
and many more) are yet other types of proof sys-
tems, with a different purpose from PoSpace. These
are systems where a verifier sends a file to a prover,

5Note that [9] calls this “one-stage proof of space”, which
has led to some confusion with the stronger “proof of space”
notion proposed earlier by [16] and first realized in [I7]. In this
work, “proof of space” always refers to the notion of [17].

and later the prover can convince the verifier that it
really stored or received the file. Proving that one
stores a (random) file certainly shows that one dedi-
cates space, but these proof systems are not proofs of
space because the verifier sends the entire file to the
prover: an important property of PoSpace is that the
verifier’s computation / communication are at most
polylogarithmic in the prover’s storage size.

Permacoin. Permacoin [31] is a cryptocurrency
proposal similar to Bitcoin, that makes use of proofs
of retrievability to build a novel variant of proof of
work. While Bitcoin’s proofs of work consist of re-
peatedly solving computational “puzzles” that have
no intrinsic value, Permacoin’s idea is to make the
puzzles serve a useful purpose: the miners are incen-
tivized to store useful data in order to solve puzzles,
and thus the network of miners can serve as a data
archive. Permacoin is, however, still fundamentally a
proof-of-work-based scheme, since miners must pro-
duce many proofs of retrievability to mine each block.
In contrast, in SpaceMint the dedicated storage does
not store anything useful, but we avoid proofs of work
altogether. Unlike Permacoin, our main goal is to
avoid the necessity of perpetual computation for min-
ing: the only operation required to mine SpaceMint,
after initialization, is a few disk accesses every few
minutes.

Burstcoin. The only cryptocurrency of which we
are aware that uses disk space as the primary mining
resource is Burstcoin [3]E| The most notable secu-
rity issue with Burstcoin is time-memory tradeoffs: a
miner doing just a little extra computation can mine
at the same rate as an honest miner, while using
just a small fraction (e.g., 10%) of the spacem In
terms of efficiency, a major issue with Burstcoin is
that a constant fraction (0.024%) of dedicated disk
space must be read every time a block is mined. In
contrast, SpaceMint requires accessing only logarith-
mically many blocks in the size of dedicated space.
For instance, at 1TB, Burstcoin reads 24GB, while

6The first public mention of Burstcoin we could find is from
mid-August 2014, which is over one year after the first public
talk on proofs of space and their potential for constructing a
“green” cryptocurrency [16].

"Details of the attack are given in Appendix



SpaceMint reads < 24 MB. Finally, verification in
Burstcoin is also problematic: a miner has to hash
over 8 million blocks to verify another miner’s claim.

3 Proof-of-Space in SpaceMint

In this section, we first discuss a simple approach that
fails to achieve the desired properties, and present our
variant of PoSpace for cryptocurrencies.

Storing a function table. A straw-man so-
lution is to have the prover store a lookup table
(1, f(1)),..., (N, f(N)) of a random-looking function
f (with a short description), sorted by the output.
The prover’s challenge is to invert the function on
a value f(z) for some random z € [N]: an honest
prover can do this in time log(N) by binary search.
Unfortunately, this approach is not a proof of space
due to time/memory trade-offs [24]|°| where a cheat-
ing prover only needs to store N2/ input/output
pairs and still invert the function in time N2/3.

Proof-of-space for SpaceMint. The PoSpace as
described in [I7] instead describes schemes that pe-
nalize a cheating prover more harshly. The space
is generated using a special type of directed acyclic
graphs called hard-to-pebble graphs. Each node i of
the graph contains a hash

lp) (1)

where p1, ..., p; are the parents of node ¢. The goal of
the prover is to prove that it is storing the graph (i.e.,
the hashes at every node). [I7] suggests two graphs
that can be used for PoSpace. With the first, the
prover must either dedicate Q(N/log(N)) or incur
at least (N /log(N)) space complexity (thus time)
to generate a proof of space. With the second, the
prover must either dedicate Q(N) space or spend
O(N) time generating a proof.

Formally, PoSpace described in [I7] consists of four
algorithms {Init, Chal, Ans, Vrfy}, and is executed be-
tween a verifier  and a prover P. PoSpace is carried
out in two phases:

l; »=hash(u,i,1,,,..

8Using a scheme that suffers from time-memory tradeoffs
for building cryptocurrency would mean miners can increase
their chance of a winning block by spending more computation,
effectively yielding a proof-of-work-based scheme.

Algorithm 1 Space commit

Common input: A hard-to-pebble graph G with n
nodes and a function hash: {0, 1}* — {0, 1}%.

1. P generates a unique nonce i and then computes
and stores (v, Sy) := Init(y,n), and sends the
nonceﬂ p and the commitment vy to V. S, con-
tains the labels of all the nodes of G computed
using Eq. . ~ is a Merkle-tree commitment to
these n labels. The total size of Sy is N = 2-n-L
(graph + Merkle tree).

1. Initialize
(a) Space commit: P initializes its space using
Init, and sends a commitment v to V.
(b) Commitment verification: V and P interact
to verify that v commits to labels which
satisfy Eq. . This is done by opening k.,
random labels together with the labels of
their parents in the commitment ~.
2. Prove space: V and P interact to verify P is
storing the space by opening k, random labels.

To use PoSpace for a currency, we must make it
non-interactive (since there is no designated verifier,
and we want any member of the network to be able to
verify). Since the verifier is public-coin, this means
we just have to find a way to generate public ran-
domness. Algorithms [} 2} and [3] describe our non-
interactive construction in detail.

We remark that proving space is much more effi-
cient than commitment verification: for the former,
it suffices to open k, = O(1) labels (and k, = 1
suffices), whereas for the latter, one must open at
least security-parameter-many labels together with
all their parents. In SpaceMint, typical miners will
run only Prove space in most time-steps, and they
will run the expensive Commitment verification in rare
cases where they find such a high-quality block that
they actually try generating a block to add to the
chain.

9The nonce ensures that the same space cannot be used for
two different proofs [I7], and thus in a single-verifier setting
we can let P generate the nounce.



Algorithm 2 Commitment verification

Initial state: V holds commitment v and nonce p; P
stores S, and p.

1. V samples (c1,...,ck,,) < Chal(n, ke, $) and
sends these challenges to P.

2. P opens all the labels of the nodes {c;}ie[x,,] and
of all their parents and sends them to V. This
is done using Ans where Ans(y, Sy, ¢) returns the
Merkle inclusion proof of label I, w.r.t. .

3. V verifies these openings using Vrfy, where
Vrfy(u,vy,c,a) = 1 iff a is a correct opening for
c. It also checks for all i = 1,..., k., if the label
l¢; is correctly computed as in Eq. .

Algorithm 3 Prove space

Initial state: V holds commitment v and nonce p; P
stores S, and p.
1. V samples (ci,...,cx,) < Chal(n,k,,$) and
sends these challenges to P.
2. P opens all the labels of the nodes {c;}ie[x..]
(using Ans) and sends them to V.
3. V verifies these openings using Vrfy.

4 SpaceMint Protocol

In this section, we describe the details of SpaceMint.
We first describe some problems that arise when de-
signing a cryptocurrency based on PoSpace, includ-
ing the nothing-at-stake problems ( Next, we
describe the SpaceMint protocol, and the details of
block chain and transactions in SpaceMint (§§4.2}-
4.4). We then describe where the challenges for the
miners come from (§4.5), and our solutions to the
problems from §4.1] . Finally, we explain how
the quality of blocks and chains is determined (§

4.7), and discuss suggestions for concrete parameters
(44.9)

4.1 Design challenges

Nothing-at-stake: Mining multiple chains. In
Bitcoin, rational miners will always work towards ex-
tending the longest known chain, as working on any
other chain would lower the expected reward. When

using PoSpace, however, mining is cheap, and it is
thus feasible to mine on many chains in parallel. For
rational miners the best strategy is to mine on all
known chains to maximize their chances at getting
the reward. This impedes consensus and potentially
might even allow for double spending. We describe
how we address this problem in

Nothing-at-stake: Grinding blocks. If we just
naively replace PoW with PoSpace in Bitcoin, a
miner can simply “grind” through many different
blocks: it can consider different sets of transactions
to add to a block until it finds a set that is in some
sense favorable for the miner. In particular, if the
challenge for proofs in a block depends on previous
blocks (as it does in Bitcoin), then a miner can grind
blocks until it finds one that gives a challenge that
will also allow him to add a future block with high
probability, potentially hijacking the chain forever.
We describe our solution in

Grinding challenges. In PoSpace, an adversary
who owns N bits of space can split up the space into
t chunks of size N/t, and commit to each chunk sep-
arately (i.e., mimicking ¢ different smaller miners).
When generating a new block, the adversary can now
choose which of the ¢ proofs to use. The quality of
each block will be typically low, but the power to
chose from t different challenges might still give an
advantage to the adversary. We discuss this attack
in detail in Appendix [C]

4.2 Protocol description

The high-level protocol of SpaceMint is similar to
that of Bitcoin [32]: coin owners generate transac-
tions to spend their coins, and the miners add these
transactions to the block chain to reach consensus on
the history of transactions, while getting some reward
when they successfully add transactions to the chain.

4.2.1 Transactions in SpaceMint

Each coin in SpaceMint belongs to some public key
(user) pk. To spend this coin, its owner signs a trans-
action with the secret key sk, and sends the transac-
tion to the SpaceMint network in order to add it to



the block chain. [[] Unlike Bitcoin however, there are
a few special types of transactions in SpaceMint (de-
scribed in §4.3) used to solve some of the challenges
from §4.1] and other issues.

4.2.2 Mining in SpaceMint

We incentivize miners to add transactions to the
block chain in two ways. First, for adding a block
to the chain, a miner receives some freshly minted
coins. The reward size is specified as part of the
protocol, and typically depends on the block index.
Second, each transaction can dedicate a small part
of the transferred amount to the miner who adds the
transaction to the block chain. The mining process
consists of two phases: initialization and mining.

Initialization. When a miner first joins the
SpaceMint network and wants to contribute N bits of
space to the mining effort, it samples a public/secret
key pair (pk,sk) and runs Algorithm [1| with pk as
nonce u to generate
(7,Sy) == Init(pk,N) .

The miner stores (S,,sk) and announces its space
commitment (pk,7) through a special transaction
(details in §4.4). Once this transaction is in the block

chain, the miner can start mining.

Mining. Once initialized, each miner attempts to
add a block to the block chain every time period. For
time period ¢, each miner
1. retrieves the hash value of the last block in the
“best” chain so far, and a challenge ¢ (we discuss
how ¢ is derived in §4.5)). ¢ is then expanded into
sufficiently long random strings $,,, $¢.;
2. samples (c1,...,cx,) < Chal(n, kp,$,) as in Al-
gorithm
3. computes the proof a := {as,...,a,} as in Algo-
rithm [3} i.e., a; = Ans(pk, S, ¢;);
4. and computes the quality Quality(pk,~,c,a) of
the proof (to be discussed in .
5. if the quality is high enough that there is a real-
istic chance of it being the best answer in period

10Note that for simplicity, we only consider the equivalent of
Bitcoin pay-to-pubkey-hash transactions; however, more pow-
erful scripts could be deployed in exactly the same way as for
Bitcoin.

i, the miner creates a block and sends it out to
the network in an attempt to add it to the chain.

The block contains (1) a set of transactions, (2) the
proof a computed above and (3) a proof that the
commitment is correctly computed as defined in Al-
gorithm [2| using $., as the randomness $. Gener-
ating a full block as in Step 5| above takes about 30
seconds in our prototype implementation (§5)), which
could limit how fast we add the blocks to the chain.
However, as discussed later in the challenge ¢
will be available to the miners tens of minutes be-
fore time period i, so Step [5| should not limit the
frequency.

4.3 Block chain format

A block chain in SpaceMint is a sequence of blocks
B0, B1, - - - which serve as a public ledger of all trans-
actions. Each block 8; = (¢, 04, 7;) consists of three
main parts, which we call “sub-blocks”. Each sub-
block contains the index 4 that specifies the position
of the block in the block chain. The structures of the
sub-blocks are as follows:

e The HASH sub-block ¢; contains:
— The current block index 3.
— The miner’s signature {, = Sign(sk, p;—1) on a
HASH sub-block with index 7 — 1.
— A “space proof” containing the miner’s pk.

e The TRANSACTION sub-block 7; contains:
— The current block index 7.
— A list of transactions (§4.4)).

e The SIGNATURE sub-block o; contains:
— The current block index <.
— The miner’s signature (; = Sign(sk,7;) on a
TRANSACTION sub-block 7; for the index 1.
— The miner’s signature (, = Sign(sk,0;_1) on a
SIGNATURE sub-block o;_1 for index 7 — 1.

The links between blocks in a block chain are illus-
trated in Figure 2] We will refer to the hash sub-
blocks as the proof chain, and the signature sub-
blocks with the transactions as the signature chain.
In the diagram, an arrow from sub-block B’ to sub-
block B” means that B’ contains the miner’s signa-
ture on B”. Notice that while the signature and
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Figure 2: Our block chain consists of a proof chain
PC that does not allow for grinding, and a signature
chain SC that binds transactions to the proof chain.

transaction sub-blocks are all linked together, the
hash sub-blocks are only linked to each other and
not to any signature or transaction sub-blocks.

This design seems to prevent any kind of consensus,
as now we can have arbitrary many signature chains
containing different transactions consistent with the
same proof chain. The key observation is that once
an honest miner adds the ith block (honest in the
sense that he will only sign one block and keep its
secret key sk; secret), the transactions corresponding
to this proof chain up to block ¢ cannot be changed
any more even by an adversary who controls all secret
keys from miners that added the first i — 1 blocks (as
this would require forging a signature under sk;).

4.4 Transaction format

Transactions in SpaceMint use signature schemes
that are existentially unforgeable under chosen mes-
sage attacks:

Y = (SigParamGen, SigKeyGen, Sign, SigVerify) .
Every transaction is signed by the user generating the

transaction. We specify the three types of transac-
tions that we allow in SpaceMint:

Payments. Coins are held and transferred by par-
ties identified by a verification key in the support of
SigKeyGenH More specifically, a transaction trans-
fers coins from m benefactors to n beneficiaries and
has the form

ctx = (payment, tzld, in, out) .

e txld: A unique, arbitrary transaction identifier.
That is, no two transactions in a block chain can

1n Bitcoin, there is a special scripting language which al-
lows for more complex transactions. This functionality can be
added to SpaceMint in striaghtforward fashion.

have the same identifier.

e out: A list of beneficiaries and the amount they
receive. Specifically, out = (outy, ... ,out,,) with
out; = (pk;,v;), where:

— pk; is in the support of SigkeyGen and spec-
ifies a beneficiary, and

— v; is the number of coins that pk; is to be
paid.

e in: A list of input coins to the transaction.
Specifically, in = (ing,...,in,), a list of n
benefactors, each comprised of a triple: in; =
(teld;, kj, sig;), where:

— txld; is the identifier of a past transaction,

— k; is an index that specifies a particular
beneficiary pky, of the transaction tzld;,

— sig; is a signature of (tzld, tx[dj,kj,oﬁt),
which verifies under key pky; proving own-
ership of the the k;th beneficiary of transac-
tion tz/d; and binding the coin to the ben-
eficiaries.

In order for a transaction to be considered valid,

the following conditions must be satisfied:

1. No benefactor is referenced by more than one
transaction in the block chain (to prevent
double-spending).

2. The sum of the input values to the transaction
(i.e., the sum of the amounts provided by each
benefactor) is at least the sum of the amounts
paid to beneficiaries.

Note that some of the beneficiary identities may be-
long to the creator of the transaction, who may thus
transfer money back to himself as “change”; e.g., if
the sum of the input values exceeds the total payment
amount he transfers to other parties.

Space commitment. A space-commitment trans-

action
ctz = (commit, tzld, (pk,~))

consists of pk, a public key, and ~ which is computed
as (7,5y) := Init(pk, N'). That is, ctx is a space com-
mitment to a space of size N.

We require every miner to commit (pk,~) because
the PoSpace proofs from [I7] have the property that
by making minor changes, one can turn (pk,~) into
many other space commitments (pk,~’), (pk,~v"), ...
that re-use parts of the space. Thus, if there were no



requirement to publish the commitment in the block
chain with a unique public key, a cheating miner
could re-use the same space for many different com-
mitments.

Punishment. A punishment transaction

ctx = (punish, txld, pk, proof) ,

consists of pk, the public key of the transaction cre-
ator, and proof, evidence of a misbehavior by another
miner. proof would usually contain the misbehaving
miner’s public key pk’, index j indicating when the
misbehavior happened, and a proof of misbehavior.
If the proof is correct, then pk’ is fined some amount
of coins and pk would receive a portion of the fine as
a reward for catching pk’. We describe a concrete use
case of punishments in §4.8

We require j to be within some reasonable period of
time of the current block, before there is a consensus
on block j. This is to ensure that the cheating miner
has not yet transferred the coin associated with the
misbehavior to another account.

4.5 Where the challenge comes from

One difficulty when designing a PoSpace-based block
chain is the generation of the input challenge ¢. Our
main solution derives this challenge from the chain
itself (as in Bitcoin), and is described in but
we first explain a simple solution assuming an unpre-
dictable beacon.

4.5.1 Unpredictable beacon

Our first solution is based on an unpredictable beacon
which broadcasts a value every time period. Since the
beacon is unpredictable, no party at time ¢ has non-
negligible probability of guessing the beacon value
that will be announced at time t + 1. For instance,
a beacon could be the hash of the current time and
the NASDAQ chart or weather pattern. Given such
a beacon, the challenge ¢ for mining block ¢ can be
derived as a hash of the beacon value. This scheme
naturally prevents block grinding, as the challenges
do not depend on something under miner’s control.
Unfortunately, assuming a random beacon may
be impractical, especially in a decentralized setting

where the source of a beacon is potentially not
trusted. In the settings where a trusted source of
randomness is available, however, this scheme would
provide an elegant and simple solution.

4.5.2 Challenges from the past

This scheme derives the challenges from the chain
itself. In Bitcoin, the PoW challenge for block 4 is
simply the hash of block ¢ — 1. We change this in
three ways to prevent attacks which are possible due
to the fact that we use PoSpace.

Using block ¢ — 1 for the challenge can slow down
consensus in SpaceMint: If there are many different
chains, miners can get different challenges for differ-
ent chains. A rational miner would thus compute
answers for many different chains (since it is easy
to do so), and if one of them is very good, try to
add a block to the corresponding chain, even if this
chain is not the best chain seen so far (but would only
mine one chain to avoid punishment). If all miners
behave rationally, this will considerably slow down
consensus, as bad chains get extended with blocks
of comparable quality to the current best chain, and
it will take longer for lower-quality chains to die off.
To solve this kind of problem, Slasher [6] penalizes
miners that extend chains that do not end up in the
final chain, but this approach penalizes users unnec-
essarily frequently. Instead, we use the hash of block
i — A for the challenge for block i for a reasonably
large A: the probability of multiple chains surviving
for more than A blocks decreases exponentially as A
increases. Moreover, we only hash the block from the
proof chain, but not the signature chain (Figure
to prevent block grinding as discussed in §4.8]

Finally, we will use the same challenge not just
for one, but for & blocks. This is done to prevent
challenge-grinding attacks. We provide the intuition
behind the attack and the parameter ¢ in §4.8] and
describe in more detail in Appendix [C}

4.6 Quality of a proof

The block added to the chain in a given time pe-
riod is decided by the quality of the PoSpace proof
included in the HASH sub-block. For valid proofs



m (Pk1,715¢1,a1)5 -, T = (PR, Yms Cms @),
the Quality(m;) of each proof should be assigned such
that the probability (over the choice of the random
oracle hash) that the ith proof has the best “quality”
corresponds to its fraction of the total space:
N'Yi,
ST
It is sufficient to achieve this relationship for any pair
of commitments for the probability above:
— N’Yz‘ .
N’Yi + N’Yj
For this, we sample from a distribution Dy, N € N
which is defined by sampling N values in [0,1] at
random, and then outputting the largest of them:

Lrncr—[0,1],0€ [N]} (2)

Let Dy (7) denote a sample of Dy using random-

ness 7 to sample. We now define

Quality(pk,v, c,a) = Dy, (hash(a)) (3)
for valid proofs. When a proof is invalid, then the
Quality function is defined to be 0.

It remains to show how to efficiently sample from
the distribution Dy for a given N. Recall that if F'x
denotes the cumulative distribution function (CDF)
of some random variable X over [0, 1] and the inverse
Fit exists, then Fiy'(U) for U uniform over [0,1] is
distributed as X. The random variable X sampled
according to distribution Dy has CDF Fx(z) = 2V,
since this is the probability that all N values r; con-
sidered in end up being below z. Therefore, if we
want to sample from the distribution Dy, we can sim-
ply sample F*(U) for U uniform over [0, 1], which
is UYN. In

hPrh[Vj # 4 @ Quality(m;) > Quality(7;)]

hPrh[QuaIity(m) > Quality(m;)]

Dy ~ max {ry,..

I we want to sample Dy, using ran-
domness hash(a;). To do so, we normalize the hash
outputs in {0, 1}” to a value in [0, 1], and get

Dy, (hash(a;)) i= (hash(a;)/2")"™ .

4.7 Quality of a chain

In order to decide which of two given proof chains
is the better one, we also need to define the qual-
ity of a proof chain (g, ..., ¢;), which we denote by
QualityPC(go, . - ., ¢i). Each hash sub-block ¢, con-
tains a proof (pkj,v;,cj,a;), and the quality of the
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block is v; = Dy, (hash(a;)) (§4.6). For any quality
v € [0,1], we define

N(w)=min{N eN : Prlv <w | w < Dy] = 1/2},
the space required to get a better proof than v on a
random challenge with probability 1/2. This quantity
captures the amount of space required to generate a
proof of this quality.

It may seem that a natural measure for the quality
of the chain would be simply the sum >3, N(v;).
This definition, however, allows for challenge grind-
ing attacks (briefly discussed in and in detail in
Appendix . Intuitively, this attack arises when the
adversary commits to his disk space in many small
chunks (as opposed to one large chunk), and then
tries out many potential challenges that are generated
from each chunk. In this attack, the linearity of sum
potentially enables an adversary to add blocks to the
block chain which generate challenges that provide
the adversary with unfair advantage “in the future”.
Hence, instead of the sum, we prefer the product of
the N(v;), or equivalently, the sum of its logarithms.

One further consideration when defining the qual-
ity of a block chain is that since the storage capac-
ity of the network would grow over time, we would
like the more recent blocks to contribute more to the
quality of a chain than older blocks: this is to pre-
vent “history rewriting” attacks where a miner mines
a block far in the past, easily beats the quality of
the blocks really mined at that time, and extends his
own blocks until his chain takes over the current best
chain. We therefore weight the contribution of the
jth block for chain of length i by a discount factor
AT

QualityPC (g, . .., @;) = Z log(N(v;)) - A*7 . (4)

4.8 Solving design challenges

In this section, we describe how we solve the design
challenges described in §4.1] Note that many of these
issues do not occur in the “unpredictable beacon”
scheme (§4.5.1)). Thus, in this subsection, we focus
our attention on the case when SpaceMint uses the
(arguably more realistic) “challenge from the past”

scheme to generate challenges (§4.5.2)).



Mining multiple chains. We will discuss two
cases, depending on whether mining is done on two
(or more) chains that forked more or less than A
blocks in the past.

Case 1: chains forked less than A ago. In this case,
the miner will get the same challenge for both chains.
SpaceMint uses punishments to disincentivize miners
from extending multiple chains in this case. Note
that without such punishments, it would be ratio-
nal for a miner who got a very good PoSpace proof
for the current challenge to extend both chains in
order to prevent his block from being “orphaned”.
Concretely, suppose there are currently two chains
whose most recent blocks are (; and ﬂ;-. If a
miner pk’ attempts to mine on both chains for in-
dex j 4+ 1 by announcing 8;41 and ﬁ§‘+1’ using the
same (pk’,7), then another miner can generate a
transaction (punish, tzld, pk, {pk’, B, B}, Bj+1, B4 1})
to punish them. Once this transaction completes,
half of the reward money and transaction fee for the
mined block will go to pk, and the other half will be
destroyed. We destroy half of the reward to ensure
that a cheating miner is punished even if it publishes
this transaction itself.

Case 2: chains forked more than A ago. Here, the
miner gets different challenges (and thus, two proofs
of different quality) for the two chains. Now it is ra-
tional for a miner to also extend chains which are not
the highest-quality chain, if it has a proof of very high
quality for that particular chain. This would slow
down consensus and give the miner an unfair advan-
tage for deviating from the protocol. Because of our
punishment scheme discussed in the previous case,
this case is extremely unlikely to happen (the prob-
ability is exponentially small in A), as a fork would
have to “survive” for A blocks despite a strong in-
centive for miners to only extend the chain of highest
quality at any given time.

Block grinding. By decoupling proofs from trans-
actions as shown in Figure [2] we eliminate the prob-
lem of block grinding. Since challenges are computed
as a hash of a block in the proof chain (but does
not depend on the signature chain), a miner who has
found a proof has only the choice of either announc-
ing it or not, but has no other degree of freedom to
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Adversary's
challenges

Adversary's Chain
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Current Chain |:H:H:| |:H:H:| |:H:H:|
2A

Figure 3: Challenge-grinding attack. The attack suc-
ceeds if the quality of adversary’s chain is better than
the current (honest) chain.

influence future challenges by changing the contents
of the block.

Challenge grinding. The challenge-grinding at-
tack arises from the fact that an adversary could po-
tentially split the space into t smaller spaces, and try
multiple challenges to find the one which will be most
favorable to him A steps in the future. As shown in
Figure[3] for time-steps ¢ through i+ A —1, the adver-
sary could choose among t challenges in each epoch
(from time i — A through i — 1) and pick the ones
that yield the best quality chain of length 2A. The
adversary can then release this chain (all at once) in
an attempt to overtake the longest chain. As men-
tioned in §4.7] this problem is exacerbated if the met-
ric for determining the quality of a chain is a sum or
any other linear function. To prevent this attack, we
(1) use product instead of a sum for the quality of a
chain, and (2) use the same block to derive challenges
for ¢ blocks (i.e., use hash(;, nonce) for nonce € [1, 4]
as challenges for time i + A through i + A +6). Intu-
itively, (1) makes it harder for the adversary to find a
good chain of length 2A by weighing the worse blocks
more, and (2) makes it exponentially harder (in ¢) to
find a “good” challenge that will yield § high qual-



ity blocks, thereby reducing the quality of the chain.
Detailed explanation of the attack and our defense is
given in Appendix [C}

4.9 Parametrization

We now discuss and justify parameter choices for
SpaceMint. A more detailed discussion on param-
eters and their influence is in Appendix [D]

Determining challenges. To minimize the prob-
ability of forks surviving for more than A blocks
(which is necessary to prevent the “mining multiple
blocks” issue from , we should choose a large A.
On the other hand, a smaller A increases other secu-
rity features of SpaceMint (discussed in Appendix@.
We suggest A = 50, as then it will be highly un-
likely that a fork would survive for A steps (since the
probability of a fork surviving is exponentially small
in A), and yet the value is not large enough to in-
troduce significant negative impacts to other aspects
(see Appendix |§| for further discussion).

Frequency of block generation. The challenge
for block ¢ is available at least A blocks (which cor-
responds to A -time minutes) before block 4 is added.
In terms of computation, since it takes less than 30
seconds to generate a block ( and we set A = 50,
we could generate blocks every few seconds given that
one miner is unlikely to mine more than a few good
blocks within the A blocks. However, we only want
to generate the blocks as fast as it can propagate
through the network, since the miners need to gener-
ate the signature chains using the previous block. In
Bitcoin, blocks propagate to over 95% of the miners
within 40 seconds [I3], so we believe that time = 1
minute would be a reasonable frequency of block gen-
eration for SpaceMint.

Quality discount factor. As discussed in §4.7]
we use a discount factor A to determine each block’s
contribution to overall chain quality. The value of A
is determined by the pace at which the total storage
in the network increases. For instance, if we assume
that storage stays roughly in the same order of mag-
nitude for two-month periods, we can set A as large
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as 0.99999E Such a high A is helpful when we ar-
gue about the hardness of generating long forks in

Appendix

Confirmation time. To confirm a transaction,
we must be sure that there is consensus regarding
the transaction being on the chain, in order to pre-
vent double spending. Bitcoin, to this end, only
confirms transactions after 6 blocks are added, at
which point users are reasonably confident of the
consensus. Their analysis [37] assumes the adver-
sary has less than 10% of total hashing power and
gives an upper-bound of 0.001 on the probability of
double-spending. Assuming a 10% adversary as in
the Bitcoin analysis (with A = 0.99999 as discussed
above), SpaceMint can confirm transactions after 6
blocks with an upper-bound of 2716 ~ 0.000015 on
the probability of double-spending, and moreover this
takes only 6 minutes compared to the 1 hour of Bit-
coin. Even assuming a stronger adversary who con-
trols 33% of the total space (and A = 0.99999 as
before), SpaceMint can confirm transactions after 93
blocks with failure probability bounded by 2732, Our
analysis is shown in Appendix

5 Evaluation

To evaluate SpaceMint, we have implemented a
prototype in Go, using SHA3 in 256-bit mode as
the hash function. The prototype uses the graphs
from [35], and forces a cheating prover to store at
least Q(IN/log(NN)) bits in order to efficiently gener-
ate proofs. Given that the network infrastructure is
very similar to Bitcoin, we are mainly interested in
three quantities: time to initialize the space (graph),
size of the proof, and time to generate and verify the
proof. The experiments were conducted on a desk-
top equipped with an Intel i5-4690K Haswell CPU
and 8 GB of memory. We used an off-the-shelf hard
disk drive with 2 TB of capacity and 64 MB of cache.

Time to initialize. To start mining SpaceMint,
the clients must first initialize their space, as de-

121 this case, the contribution of a block decreases by a
factor 1/e ~ 0.37 every 1/(1 — A) = 100.000 blocks, which for
time = 1 minute is roughly 69 days.
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A = 30. The y-axis on the left and right represents
the size for opening Alog(n) and X nodes respectively.

scribed in Concretely, this involves computing
all the hashes of the nodes, and computing the Merkle
tree over the hashes. In Figure [} we show the ini-
tialization time for spaces of size 8 KB to 1.3 TB. As
expected, the time to initialize grows linearly with the
size of the space; at 1.3 TB, it takes approximately
41 hours to generate and commit the space. While
expensive, this procedure is done only once when a
miner first joins the SpaceMint network, and the ini-
tialized space will be used over and over again. In
fact, space initialization should take non-trivial time
because an extremely fast space initialization would
make re-using the same space for different commit-
ments a viable strategy.

Size of the proof. A proof in SpaceMint consists
of the Merkle inclusion proof for a set of node labels.
For the PoSpace that we implemented, the number
of nodes we have to open is A -log(n) + 1 (as ke, =
A-log(n) in Algorithmand k,=1in Algorithm,
where A is a statistical security parameter. Every
node in this graph has at most two parents, and each
opening of a node is log(n) - 32 bytes. Thus, the over-
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Figure 6: Time it takes for a miner to prove and
verify the space when Alog(n) nodes are opened for
A = 30.

all proof size is upper-bounded 3-\-log?(n)-32 bytes.
Though opening fewer than Alog(n) nodes is not
shown to be secure, we are unaware of any concrete
attacks even for opening A nodes. We believe that the
size of a sufficiently secure proof will lie somewhere in
between, closer to opening A nodes. Figure [f] demon-
strates the size of the proof when we open Alog(n)
nodes vs. just A nodes for A = 30.

Time to generate/verify the proof. In
SpaceMint, assuming a miner is storing the space cor-
rectly, the miner needs to only open k, = 1 node in
the Merkle tree to check the quality of its solution
(, which takes just a fraction of a second; it takes
< 1 ms to read a single hash from the disk. Only in
the rare case where the miner believes its answer is
of very good quality will it generate the full proof,
which still takes less than 30 seconds.

Our proofs are substantially bigger than Bitcoin’s,
and require more than just one hash evaluation to
verify. However, for an active currency, we still ex-
pect the size and verification time for the proofs
added with every block to be marginal compared to
the size of the transactions added with every block or
the time required to verify that the transactions are
consistent. Figure[f]indeed shows that even though it
takes seconds to generate the proof, verification takes
only a fraction of a second.

Energy estimates. Though our prototype was
evaluated using a full CPU which wastes a lot of en-
ergy, a cost-conscious miner could mine on a much
more energy-efficient device (e.g., Raspberry Pi [5]).
An efficient microcontroller consumes less than 10 W
of power, and most miners will only open a few nodes



per time step since the quality of their answers will
usually be bad. To get an upper bound on the power
requirement, suppose there are 100000 miners, each
with 1 TB of space, and about 1% of the miners mine
“good” answers for which they will generate a full an-
swer. Then we have

10W-100000-0.01s+10W-1000-20s = 210 000J/block

which translates to 210 kJ/min if we add one block
every minute. In contrast, Bitcoin on average uses
100 MW, so it consumes 6 GJ/min, which is several
orders of magnitude larger. We note that the 1%
figure is a very conservative bound, so the difference
could be even larger in practice.

6 Discussion

In this section we shortly address two potential is-
sues with SpaceMint, DoS attacks and the use of very
cheap storage like tapes.

DoS. A party who wants to mine must have its space
commitment (pk,v) added to the hash chain. A mali-
cious party could flood the network with countless re-
quests of fake commitments to be added to the chain.
One simple way to counter this is to request some
small transaction fee, as is done for normal transac-
tions. The drawback is that now miners must already
possess some coins to even start mining. Another so-
lution is to require that one has to provide a full com-
mitment verification proof (as in Algorithm for the
commitment (pk,v) to be added. This proof is only
provided to show that the space for this commitment
has really been instantiated, which is fairly expensive,
but the proof will not be added to the chain.

Tapes. The designer(s) of Bitcoin probably were
anticipating that most of the mining will be done
by users on their personal computers. What hap-
pened instead is that today almost all mining is done
by clusters of application-specific integrated circuits
(ASICs), which can do the computation for a tiny
fraction of the hardware and energy cost of a general-
purpose processor. We anticipate that a PoSpace-
based currency would mostly use the idle disk space
on personal computers for mining. Although hard
disks are rather expensive compared to other storage
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devices — most notably tapes — devices like tapes are
not adequate for mining, as we also require frequent
random accesses to answer the PoSpace challenges,
which is more difficult on tapes, which are made for
long term storage.

7 Game theory of SpaceMint

The miners in a cryptocurrency are strategic agents
who seek to maximize the reward that they get for
mining blocks. As such, it is a crucial property of a
cryptocurrency that “following the rules” is an equi-
librium strategy: i.e., it is important that the proto-
col rules are designed such that miners are never in
a situation where deviating from the protocol yields
more expected profit than behaving honestly.

Intuitively, SpaceMint mining is modeled by the
following n-player strategic game. Game-play occurs
over a series of discrete time steps, each of which
corresponds to a block being added to the blockchain.
At each time step, each player (miner) must choose
a strategy, specified by:

e which blocks to extend (if any),

e which extended blocks to publish (if any).

Showing that adhering to the protocol is an equilib-
rium of such a game means that rational miners are
not incentivized to deviate from the protocol when
playing the game. From this, by definition of the
SpaceMint protocol, it follows that rational miners
will reach consensus on a single chain, and will not
be able to get an unfair mining advantage by using a
“cheating” strategy.

We remark that game-theoretic analyses inherently
start by defining a game which models reality, and
prove properties of the game in this model. It is al-
most never possible for a model to capture all aspects
of a real-world situation, and it is moreover desirable
to have a model which is simple enough to allow for a
rigorous analysis of incentives, while still being close
to reality.

7.1 Game-theoretic preliminaries

The standard game-theoretic notion for a strategic
game which occurs over multiple time steps (rather



than in “one shot”) is the extensive game. In or-
der to accurately model the probabilistic aspects of
the SpaceMint protocol (e.g. the unpredictable bea-
con), we consider extensive games with chance moves,
which is the standard game-theoretic notion to cap-
ture extensive games which involve exogenous uncer-
tainty. The uncertainty is modeled by an additional
player called Chance which behaves according to a
known probability distribution.

In the SpaceMint setting, every player (including
Chance) makes an action at every time step. A
player’s action consists of choosing whether and how
to extend the blockchain, and the action of Chance
determines the value of the unpredictable beacon for
the next time step.

An extensive game is commonly visualized as a
game tree, with the root node representing the start
of the game. FEach node represents a state of the
game, and the outward edges from any given node
represent the actions that players can take at that
node. Leaf nodes represent terminal states: once
a leaf is reached, the game is over. In accordance
with the literature, we refer to paths in the game
tree (starting at the root) as histories; and histories
which end at a leaf node are called terminal histories.

Definition 7.1 (Extensive game). An extensive
game I' = (N, H, fe, I, @) is defined by:
e [N], a finite set of players.
e H, the set of all possible histories, which must
satisfy the following two properties:
— the empty sequence () is in H, and
—if (a1,...,ax) € H then for all L < K, it
holds that (ai,...,ar) € H.
We write Z < H to denote the subset consisting
of all terminal histories. For any history h,
A(h) ={a: (h,a) e H} = X Ai(h)
€[N
denotes the set of action profiles that can occur at
that history, and A;(h) denotes the set of actions
that are available to player i at history h.
e f(-,h) is a probability measure on Ac(h), where
h e H and C denotes the Chance player.
o7 = (Zy,...,IN), where each I; is a partition
of H into disjoint information sets, such that
A;(h) = A;(h') whenever h and h' are in the
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same information set I € ;. Let A;(I) denote
the set of actions that are available to player i at
any history in information set I.

e 4= (uy,...,un), where each u; : Z — R is the
utility function of player 1.

Imperfect information and information sets.
An extensive game is said to have perfect informa-
tion if at any point during game-play, every player is
perfectly informed of all actions taken so far by ev-
ery other player. In the context of SpaceMint, play-
ers are only aware of each others’ announced actions:
for example, if Alice tries extending several blocks
and then only announces one of them, Bob does not
know about the other blocks that Alice tried. Thus,
SpaceMint is a game of imperfect information.

The information that players do not know about
other players’ actions is modeled by the partitions
7= (Z4,...,Zn) in Definition Each Z; is a par-
tition of H into disjoint information sets, and for each
i € [N] and any pair of histories h,h' € I in a partic-
ular information set I € Z;, player ¢ cannot tell the
difference between game-play at h and at h'.

Example 7.2 (“Match my number” game). Con-
sider a simple two-player game in two rounds: in the
first round, player 1 chooses a number a € {0, 1,2}.
In the second round, player 2 chooses a number
b e {0,1,2}. Player 2 wins if b = a, and player 1
wins otherwise. Clearly, player 2 can always win if
he knows a.

However, we consider a game of tmperfect informa-
tion where player 2 must choose b without knowing
a: in particular, suppose player 2 only learns whether
a = 0. Then, the histories (a = 1) and (a = 2) are in
the same information set in the partition Z,. Figure[7]
shows the game tree, with player 2’s information sets
as dashed red boxes: within each dotted box, player
2 cannot tell which history he is at.

Strategies. A strategy of a player in an extensive
game is defined by specifying how the player decides
his next move at any given history. In games of im-
perfect information, the player may not know which
history he is at, so we instead specify how the player
decides his next move at any information set.
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Figure 7: Game tree for the “Match my number”
game. Leaves are labelled with the winning player.

Definition 7.3 (Strategy profile). A strategy pro-
file & = (a1,...,an) of an extensive game T' =
(N,H, fc,f, Wy specifies for each player i € [N] and
each information set I € Z; a probability distribution
a;(I) over the action set A;(I). We say that o is
the strategy of player i.

Let I(h) denote the information set in which his-
tory h lies. The probability that a history h occurs
under strategy profile « is denoted by Prgz[h], and
the probability that a history h’ occurs given that h
occurred is denoted by Prz[h/|h].

Recall that the utility functions wq,...,uy were
defined on Z, the set of terminal histories. For each
i € [N], we now define u; (&) to be the expected utility
of player 7 given the strategy profile &.

ui(d@) = Y] ui(h) - Pr[h] .
heZ
Moreover, we define u;(&|h) to be the expected util-
ity of player i given & and given that history h has
already occurred. That is,
ui(@lh) = > ui(h') - Pra[h|h] .
h'eZ

7.2 Equilibria of extensive games

The most widely known equilibrium concept for a
strategic game is the Nash equilibrium [33], given in
Definition Intuitively, in a Nash equilibrium,
each player’s strategy is a best response to the strate-
gies of the other players.

For a strategy profile &, we write d_; to denote
(cj)jen,j2i, that is, the profile of strategies of all
players other than ¢; and we use (o}, @_;) to denote
the action profile where player i’s strategy is o/ and
all other players’ actions are as in a.
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Definition 7.4 (Nash equilibrium of an extensive
game). LetT' =(N,H, f, 7, Wy be an extensive game.
A strategy profile & is a Nash equilibrium of I' if for
each player i € [N] and each strategy o of player i,

uz(&) = ’U,Z‘(O(;,&_Z‘) .

The Nash equilibrium concept was originally for-
mulated for one-shot games, and it is known to have
some shortcomings in the setting of extensive games.
Informally, the Nash equilibrium does not account
for the possibility of players changing their strategy
partway through the game: in particular, there ex-
ist Nash equilibria that are not “stable” in the sense
that given the ability to change strategies during the
game, no rational player would stick with his equilib-
rium strategy all the way to the end of the game.

Example 7.5 (“Unstable” game). Consider a simple
two-player game in two rounds: in the first round,
player 1 chooses either strategy A or B. In the second
round, player 2 chooses either strategy C' or D. The
game tree is given below, where the notation (z,y)
at the leaves denotes that player 1 gets payoff x and
player 2 gets payoff y if that leaf is reached.

Player 1's turn

A B

Player 2's turn ‘ ‘ Player 2's turn
C D c D

(0,0) (2,1) (1,2) (1,2)

Figure 8: Game tree for the “Unstable” game.

It is a Nash equilibrium of this game for player 1 to
choose B, and player 2 to always choose However,
the strategy profile (B, C) seems “unstable”lEl, in the
following sense: player 1 does not want to switch
from strategy B to A because of the “threat” that
player 2 will then choose C'. However, in the situa-
tion where player 1 has actually chosen strategy A,
it is clearly better for player 2 to play D rather than

131t is straightforward to verify that this is an equilibrium,
by considering the payoff matrix of the game.

141n this example, we assume that the game is with perfect
information.



follow through with the threatened strategy C. That
is, the threat does not seem credible.

To address these shortcomings of the Nash equi-
librium concept for extensive games, an alternative
(stronger) notion has been proposed: the sequentially
rational Nash equilibrium. This stronger concept en-
sures that players are making the best decision pos-
sible at any point during game-play. In a game with
imperfect information, it is necessary to consider not
only the strategy profile, but the players’ beliefs at
any point in time about how game-play arrived at
the current information set. A strategy profile which
takes into account players’ beliefs is called an assess-
ment.

Definition 7.6 (Assessment). An assessment in
an extensive game s a pair (&, [) where & =
(a1,...,an) 1is a strategy profile and [ =
(11, -, ) is a belief system, in which each p; is
a function that assigns to every information set in Z;
a probability measure on histories in the information
set.

In Definition 1i(I)(h) represents the probabil-
ity that player ¢ assigns to the history h € I having
occurred, conditioned on the information set I € Z;
having been reached. For each i € [N], we now define
u;((@, @)|I) to be the expected utility of player i at
the information set I € Z;, given the strategy profile
& and belief system fi. That is,

wi (@ @)1 = Y, wi(@lh) - p(I)(h) -
hel
We write u;((&, i£)) to denote u;((&, £)[{()}), i.e. the
expected utility for player ¢ at the start of the game.

An assessment («, ) is said to be sequentially ra-
tional if for every i € [N] and every information set
I € 7;, the strategy of player i is a best response to
the other players’ strategies, given i’s beliefs at I. A
formal definition follows.

Definition 7.7 (Sequentially rational assessment).
Let T = (N,H, 1.7, Wy be an extensive game. An
assessment (&, [1) is sequentially rational if for every
i € [N] and every strategy o} of player i, for every
information set I € I;, it holds that

ui (6, D)) = ui((of, d-i), A)) -

Definition almost fully captures the idea play-
ers should be making the best decision possible given
their beliefs at any point during game-play. To fully
characterize a sequential Nash equilibrium, we require
additionally that the beliefs of the players be consis-
tent with @. For example, if an event occurs with
zero probability in &, then we require that players
also believe it will occur with zero probability.

Definition 7.8 (Consistent assessment). Let I' =
(N,H, [, Z, iy be an extensive game. A strategy pro-
file @ is said to be completely mixed if it assigns
positive probability to every action at every informa-
tion set. An assessment (&, i) is consistent if there
is a sequence ((@"™, i"))nen of assignments that con-
verges to (@, fi) in Fuclidean space, where each @™ is
completely mized and each belief system [i™ is derived
from Q™ using Bayes’ rule.

Finally, we arrive at the definition of a sequen-
tial Nash equilibrium, which is the canonical solution
concept in the game theory literature for extensive
games.

Definition 7.9 (Sequential Nash equilibrium). An
assessment is an sequential Nash equilibrium if it is
sequentially rational and consistent.

Relaxing to epsilon-optimality. In our analysis,
we will focus on a slight relaxation of sequential ra-
tionality, which requires an assessment to be e-close
to optimal rather than optimal. The definition of
e-sequentially rational assessment, given below, is a
direct application of the standard game-theoretic no-
tion of e-optimality to Definition [7.7} This relaxed
notion is required for settings where we assume com-
putationally bounded players.

Definition 7.10 (e-sequentially rational assess-
ment). Let T'=(N,H, f, 7, Wy be an extensive game.
An assessment (&, [i) is e-sequentially rational if for
every i € [N] and every strategy o of player i, for
every information set I € T;, it holds that

ui (& A)|T) = ui(((af, &), D) — € -

Definition 7.11 (e-sequential Nash equilibrium).
An assessment is an e-sequential Nash equilibrium
if it is e-sequentially rational and consistent.

17



There is an analogous, e-optimal variant of Nash
equilibrium (i.e.  without sequential rationality)
which is standard in the game theory literature:

Definition 7.12 (e-Nash equilibrium of extensive
game). LetT' = (N, H, f, 7, Wy be an extensive game.
A strategy profile @ is an e-Nash equilibrium of T" if
for each i € [N] and each strategy o of player i,

ui(@) = ui(af,d;) — € .

7.3 Game-theoretic analysis

In order to analyze the game-theoretic properties
of SpaceMint mining, we define an extensive game,
SpaceMint, which models the actions that miners can
take, and the associated payoffs.

7.3.1 Simplifying the action space

To facilitate analysis, we have simplified the action
space as much as possible while still accurately cap-
turing the important features that influence the in-
centives of SpaceMint miners. Concretely:

e We do not include the action of creating trans-
actions because such actions do not affect the
rewards that players receive from mining blocks,
except in the case of punishment transactions.
To deal with the case of punishment transac-
tions, we define the payoff of a player who mines
multiple blocks in the same time step to be zero.
This payoff function exactly captures that of a
miner in the actual SpaceMint protocol, because
it is a dominant strategy for each other miner
to create a punishment transaction (including a
positive transaction fee) if she sees that a cheat-
ing player has mined multiple blocks in a time
step, and hence we can assume that the cheating
player will surely be punished at a later point in
the protocol. Since the punishment penalizes the
cheating player by the amount of the mining re-
ward, it follows that the cheater’s overall utility
for the time step in which he cheated is zero.

e We model the proof-of-space challenge accord-
ing to the “unpredictable beacon” scheme rather
than the “challenge from the past” scheme. We
remark that this simplification (unlike the other
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simplifications listed here) does mean that our
game-theoretic analysis does not model certain
attacks: namely, the attacks to which “unpre-
dictable beacon” is robust but “challenge from
the past” is vulnerable. The only example of
such an attack of which we are currently aware
is challenge grinding (Appendix.

e We do not include the action of creating a space
commitment because (as discussed in “Min-
ing”) we can assume rational miners commit to
all the space they have, and not morelEI

Remark. To simplify exposition, we do not explic-
itly model the amount of the space that each player
has in the game defined below. A standard way to
model this would be to assign each player a type t;,
representing player i’s amount of space. Our expo-
sition keeps the types implicit; our theorems require
that no player has more than 50% of the space com-
mitted by active miners.

7.3.2 The SpaceMint mining game

Let IT = {Init, Chal, Ans, Vrfy} be a proof of space. Let
B denote set of all blocks as defined in and for
any ¢ € N, let B, denote the set of all blocks with
index ¢ Let B! denote the set of blocks with index
at most £, i.e. B¢ = Uﬁ,:O B, Let Bgen be the genesis
block; note that By = {Bgen}-

For a block B € B and a challenge ¢ <« Chal,
we define Ext;(B,c) to be the block generated by
player ¢ when mining the next block after B using
the PoSpace challenge ¢ (see for exact block for-
mat). For £ € N and challenge ¢, define:

Bui.={(B,B)eBy1 x By : B = Ext;(B,c)}
and let [;’Z,i,c = UWG{O,...,@} BZ’,i,c-
Definition 7.13 (The SpaceMint Game). Let II =

{Init, Chal, Ans, Vrfy} be a proof of space. For any
number of players N € N, any number of time steps

15Note that this argument does not quite apply when chal-
lenge grinding attacks are possible. However, the argument
holds here since our analysis is in the unpredictable beacon
setting.

16The index denotes the block’s position in the block chain.
In 7 is used to refer to the block index, but in this section
we use ¢ to avoid confusion with the player indices.



defined as described below. For a history h, let
&(h) denote the sequence of actions taken by the
Chance player in h. Let B.chal denote the chal-
lenge ¢ within the proof of space of a block B.
Recall that the functions Quality(B) and
QualityPC(ﬁ) were defined in . We define a
new function

K e N, any consensus-delay ¥ € N, and any reward
function p: N — N, we define the extensive game

SpaceMintyy ;e , = (N, H, fe I,y
as follows:

e The set H of histories is defined inductively.
— The action set of the Chance player

Ac(h) = {0,1}™ is the same for every his- . .

’ lity(B B.chal =
tory h. Quality(B, ¢) = {Sua ity(B) zfth C .a c
— The empty sequence () is in H, and otherwise.

4:(0) = {(2,2)} for each i € [N].
— For any non-terminal history h and any i €
[N], the action set A;(h) of player i at h

Also, let QualityPC((By,...,Br),(c1,...,¢c1)) be
equal to QualityPC((By, ..., BL)) whenever

Ai(n) =P (BI" x BIFHT) P (B x BlM+T)

An action a; € A;(h) is a pair of sets a; =
(T,A). T is the set of blocks that player i
tries extending in this time step, and A € T
s the set of blocks that player i announces
in this time step. An element in T (or A)
is a pair of blocks (B',B) e BIM x BIM+1
where B’ is the existing block which player i
wishes to extend, and B € B is the extended
block.
e The probability measure f(-,h) is uniform on
{0,1}™.
e For each i€ [N], we define the partition Z; by an
equivalence relation ~;. The equivalence relation
~; is defined inductively as follows (we write [h];
to denote the equivalence class of h under ~;):
— [0]: = {0}, that is, the empty sequence is
equivalent only to itself.

- [(h7 ((717A1)7 X (TNa‘AN): ac))]i =
{1, (T, AL, (T, Ay).ag)) € H
h~i W AT =T, AA; =AL Aac = ag
AV # i Ay = ALY,
where h and I/ are histories of equal length,
and the pairs (T, Air) and (T,,,AL) are ac-
tions of playeri'. That is, two histories are
equivalent under ~; if they are identical ex-
cept in the “first components” Ty of the ac-
tions (T, Ai) taken by players other than
i.

V¢ e [L], Be.chal = ¢y and By € By
and
Vee [L], Jie[N] st (Be_1,Br) € Bric,
and equal to O otherwise.

For any history h, let A(h) be the set of all blocks
announced by any player in history h:

B _Jie[N],A s.t. (,B)e A’ and

Alh) = {B " player i took action (-, A’) in h }
Let blocks(h) denote the sequence of “winning
blocks” at any given history h:

blocks(h) = argmax (QualityPC(B, €(h))).

Be(A(h)!"

Let blocksy(h) denote the (th block in the chain.
Let wing(h) be the player who announced the win-
ning block blocksy(h) for index EE
Recall that a history h = (dy,...,d ) is a se-
quence of J < K action profiles. For j € [J],
let (T; 5, Ai ;) be the action of player i in d;. Let
oney(i, h) be an indicator variable for the event

that player © announces at most one block with
index £, i.e.

B:BebByand (-,B) € UAM < 1.
jelJ]
Finally, the players’ utility functions are defined
as follows: for a terminal history h of length K,

ui(h) = Y 6 wing(n)-onec(i, h)-p(blocks(h)),
le[K—T]
where 6; ;5 is the Kronecker delta function.That

17We can assume that the winning block is unique at each

o U = (ul, . ,uN), where each u; : Z — R is time-step, and Quality imposes a total order on blocks.
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18, a player’s utility is the sum of the rewards he
has received for announcing a winning block, up
to index K — .

By Definition for any i € [N], for any histo-
ries h, b’ in the same information set I € Z;, it holds
that blocks(h) = blocks(h'). Thus, we can associate a
unique blockchain with each information set: we de-
fine blocks(I) to be equal to blocks(h) for any h € I.
Similarly, €(h) = €(h') for any h,h’ € I in the same
information set I, so we define €(I) to be equal to
€(h) for any h e I.

For a block B € B and a challenge ¢ <« Chal,
we define Ext;(B,c) to be the block generated by
player ¢ when mining the next block after B using
the PoSpace challenge ¢ (see §?7 for exact block for-
mat).

Theorem 7.14. Let
IT = {Init, Chal, Ans, Vrfy}

be a proof of space. For any number of players N,
any number of time steps K € N, and any reward
function p : N - N, let & = (a1,...,q,) be a pure
strategy profile of SpaceMintyy j ,, defined as follows:
for each i € [N], for any information set I € IT; such
that I # {()},

a;(I) (({blocks; (1)}, {Ext;(blocks;(I), €;(1))})) = 1,
where j = 1 is the length of the histories in infor-

mation set 5| That is, player i’s next action at
information set I is

&; = ({blocks;(I)}, {Ext;(blocks;(I),€;(I))}).
Then d is a Nash equilibrium of SpaceMinty g .

Proof. Take any player i € [N]. By the definition of
Ext, for any information set I € Z; with I  {()}, the
quality v of the extended blockchain
v = QualityPC((blocks(I), Ext;(B, €;(I))), €(I))

is the same for any block B which was announced
at time step j. Therefore, no utility can be gained
by choosing any block B over any other block B’ to
extend: that is, u;(@) = u;(a}, &_;) for any strategy
o which distributes probability over actions of the
form (S,T) where |S| = 1.

18 All histories in an information set are the same length.
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Moreover, not extending any block or extending
multiple blocks precludes a player from being the
“winner” and receiving the reward in this time step,
so extending a block is preferable to not extending
any block. That is, u;(&) = w;(af, &_;) for any strat-
egy «f which assigns non-zero probability to any ac-
tion of the form (S,7") where |S| # 1.

We have shown that u;(&) = wu;(af,d_;) for all
strategies o of player i. The theorem follows. O

7.3.3 Analyzing the SpaceMint game

In this section, we prove that honest mining is an -
sequential Nash equilibrium of the SpaceMint game.

By Definition for any i € [N], for any histo-
ries h, i’ in the same information set I € Z;, it holds
that blocks(h) = blocks(h'). Thus, we can associate a
unique blockchain with each information set: we de-
fine blocks(I) to be equal to blocks(h) for any h € I.
Similarly, €(h) = €(h') for any h,h’ € I in the same
information set I, so we define €(I) to be equal to
&(h) for any h € I.

First, Theorem defines an e-Nash equilib-
rium of the SpaceMint game, and then Theorem
shows that this Nash equilibrium is, moreover, an e-
sequential equilibrium.

Theorem 7.15. Let IT = {Init, Chal, Ans, Vrfy} be a
proof of space. For any number of players N, any
number of time steps K € N, and any reward function
p: N> N, let @ = (ay,...,a,) be a pure strategy
profile of SpaceMinty i ,, defined as follows: for each
i € [N], for any information set I € I; such that
I#4{0}

a;(I) (({blocks,(I)}, {Ext;(blocks,(I),Ee(I))})) = 1,

where £ = 1 is the length of the histories in infor-
mation set IE That is, player i’s next action at
information set I is
Q; = ({b'OCkS[(I)} R {EXtZ‘(b|OC|(Sg(I)7 Q:Z(I))}) .

Let
max;e[n] ti

Dien bi
be the mazimum fraction of space possessed by a sin-

&=

19 All histories in an information set are the same length.



gle playerﬂ and suppose & < 0.5. Then a is an
e-Nash equilibrium of SpaceMintyy j ,, where

1 K-1 2
. 2 2i
~55 Eldiff.]”- (Z A J) ,

Jj=0

€ = exp

A is the discount factor defined in 4.7 and diffy is
defined as in D

Proof. Fix any player ¢ € [N]. By the definition of
Ext, for any information set I € Z; with I s {()}, the
quality v of the extended blockchain

v = QualityPC((blocks(I), Ext;(B, €,(1))), (1))
is the same for any block B which was announced
for block index £. Therefore, no utility can be gained
by choosing any block B over any other block B’ to
extend. That is, u;(@) = wu;(af,d_;) for any strat-
egy o) which distributes probability only over action
sequences ((T;.1,4:1),- .., (Tikx,HAs k)) such that

Vle K -], |[AinBy =1,
where A; = U, je(x Aij-

Moreover, for any given block index /¢, not an-
nouncing any block or announcing multiple blocks
precludes a player from being the “winner” and
receiving the reward at index ¢, so announcing
exactly one block per index is preferable to an-
nouncing any other number of blocks. Hence, for
any strategies af,a} such that af announces ex-
actly one block per index with probability 1, and
o assigns non-zero probability to action sequences
((Ti,la‘Ai,l)7 ey (Ti,K,Ai,K)> such that

Vle K -], |[A;n By #1,
(where A; = [, e Ai,j as above), it holds that

ui(ui(og, d—;)) = wi(af, ;).

We can now restrict our attention to strategies
which announce exactly one block per index. Fix
any time-step j € [K]. Let o} be any strategy in
which the probability that player ¢ announces a block
Bj € B; at time-step j is less than 1.

Suppose player i does not announce a block B €
B; at time-step j. Since we are assuming that i
announces exactly one block per index, we know

20Recall that t; is the amount of space that player i has
(defined in the remark just before Definition [7.13]).
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¢ announces a block B;; € B; at some time-step
j' > j. 1If the other players use strategies &@_;
(i.e. they announce exactly one block with index
j at each time-step j), then no player (other than
i) will extend player ¢’s block B;;. Let B =
(Bgen, By, ., Bi_1,Bi ;) be the unique (length-j7)
blockchain induced by B; ;. If player ¢ does not ex-
tend his own block B; ;, then he will gain no utility
after time-step j. Thus, the only way player ¢ can
gain any utility in time-steps after j is if he extends
his own blocks all the way up to time-step K:

Bi ji1 = Exti(Bij,€(1i5))

Bi kx = Exti(Bi k-1,€;(lix-1))
where I; ; denotes player i’s information set at time-
step 7, and moreover his self-extended chain has
higher quality than any chain produced by the other
players: that is, at the terminal history h,

QualityPC((B’, Bij+1, - - -, Bi.x), (I ic))

— argmax (QualityPC(B, €(h))). (5)
Be(A(h))Inl
By Theorem the probability that holds is at
most

1 K-1 2
. 2 24
exp | —oo - E[diff,]"- (Z A J)
7=0
We conclude that u;(@) = w;(af,d_;) — ¢ for all
strategies « of player i. The theorem follows. O

We now show that honestly following the
SpaceMint protocol is an e-sequential Nash equilib-
rium of the SpaceMint game.

Theorem 7.16. Let IT = {Init, Chal, Ans, Vrfy} be a
proof of space. For any number of players N, any
number of time steps K € N, and any reward func-
tion p : N — N, let (a@,[i) be an assessment of
SpaceMintyy g , where:

e a and &; are defined as in Theorem and
for each n € N, we define a" to be the com-
pletely mized strategy profile which (at history
h) assigns probability 1/|A;(h)|™ to every action
except &;, and assigns all remaining probability
to OAél



e /i is derived from & using Bayes’ rule in the fol-
lowing way: [ = lim, o 1", where for each
neN, g" is derived from @™ using Bayes’ rule.

Let
max;e[n] i

Die[n] Li

be the mazimum fraction of space possessed by a sin-
gle player, and suppose £ < 0.5. Then (&, i) is an e-
sequential Nash equilibrium of SpaceMintyy g , where

2
~]E[difF1]2~< A2j> ,

A is the discount factor defined in 4.7 and diffy is
defined as in 0

Proof. Fix any player ¢ € [N]. Let I € Z; be any
information set of player i in SpaceMint i ,, and let
L be the length of histories in I. It follows from
Definition that the expected utility of player i
at T is u;((d, D)|I) =

Z 5i,winj(h) - ONng; (Z7 h) . p(b|OCkSJ(h)) + U;((&, /_j))a
JjelL]
where u} is the utility function of player ¢ in the
game SpaceMinty g, ,. Since win, one, and blocks
are invariant over histories within any given infor-
mation set, the summation term can be computed
explicitly by player ¢ at I. Hence, in order to maxi-
mize his expected utility at I, the player needs sim-
ply to maximize u}((&, f)). Let (&|x—r,f{x—r) de-
note the assessment (&, ji) for the first K — L time
steps of the game. By Theorem alg—y is an
e-Nash equilibrium of SpaceMinty i ,. Since [
is derived from & by Bayes’ rule, it follows that
(@ @) > us(((aly@_i), f)|T) for any strategy
o of player i. Applying this argument for every I,
we conclude that (&, i) is e-sequentially rational in
SpaceMintyy g .

Moreover, by construction, lim, ., @" = & and
i = lim,_,o @". Therefore, (&, i) is consistent. The
theorem follows. O

3

K-1

2

Jj=0

€ = exp 5K

7.3.4 Concluding game theory remarks

SpaceMint Game is
It is natural to

Parameters. The
parametrized by N and K.
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ask: do we require that the number of miners N
is fixed in advance, or that the blockchain will end
after a certain number K of time steps? The answer
is mo. Theorem [7.10] gives a sequentially rational
Nash equilibrium in which each player’s strategy is
independent of IV, and so it makes sense for each
miner to play this strategy even if N is unknown
or changes over time. In light of this, from each
rational player’s point of view, K can be considered
to be the number of time steps that he intends to
participate in the game: perhaps his goal is to use
his earnings to buy a house after K time steps, or
perhaps he does not expect to live for more than K
time step>]] The crucial observation is that even
if different players have different values of K “in
their heads”, their equilibrium strategies are still the
same.

Buying space. Players’ strategies in equilibrium
do not depend on the amount of space that (they
believe) other players possess. Also, we showed above
that the equilibrium strategies are robust to changes
in N. Hence, if a player’s amount of space changes
(e.g. he buys/sells a hard disk), then he can simply
create a new space commitment, and then behave as
a “new player” with the new amount of space.

Synchrony and network delays. We have also
considered a generalized game that additionally mod-
els network delays and clock asynchrony, and per-
formed an analysis to characterize parameters for
which equilibrium can be achieved in this setting too.
As the main ideas are similar to the analysis of the
SpaceMint game, we refer to Appendix [E] for details
of of the generalized analysis.

7.3.5 Remarks on selfish mining

The “selfish mining” attack against Bitcoin (pro-
posed by [20]) is as follows: a miner extends his own
blocks to make a parallel chain to the main block
chain, without announcing his blocks to the network.

2l1n the latter case, K is an upper bound on the number of
time steps that the player intends to stay in the game. It is
reasonable to treat K as an upper bound because maximizing
expected utility after K time steps also maximizes expected
utility after any 0 < L < K time steps, as shown in the proof

of Theorem



The attack is successful if the parallel chain even-
tually becomes higher-quality than the main chain:
then, the miner announces the entire parallel chain,
and honest miners will be incentivized to start min-
ing on the newly announced chain. [20] showed that
even for miners with significantly less than 50% of
the network’s resources, this attack pays off in ex-
pectation. This overturned the prior, widely held be-
lief that Bitcoin was robust to attacks by adversaries
with a minority of network computing power.

It turns out that SpaceMint is far more robust than
Bitcoin against selfish mining attacks. The Bitcoin
protocol prescribes that miners attempt to extend
the longest chain they have seen so far, at any point
in time. In contrast, SpaceMint prescribes that in
each time-step, miners attempt to extend the best
chain seen during the preceding time-step. The dis-
crete nature of SpaceMint mining is a key difference
from Bitcoin, for robustness against selfish mining.
The success probability of selfish mining in Bitcoin
depends on propagating “selfish” blocks across the
network faster than “honestly mined” blocks, since
which one is seen first will determine which one is ex-
tended by more miners. In SpaceMint, most honestly
mined blocks announced in a time-step will be seen by
most miners by the start of the following time—step@
so intuitively, this “race” condition is irrelevant and
this makes selfish mining harder.

The SpaceMint game (Definition explicitly
models the possibility of selfish mining, and our
game-theoretic analysis shows SpaceMint’s robust-
ness against such attacks.

7.3.6 Remarks on the “51% Attack”

If a player P controls more than half of the total
space that belongs to active miners, then following
the protocol rules is no longer a Nash equilibrium, be-
cause whichever branch of the blockchain P chooses
to mine on will eventually become the highest-quality
chain. Thus, P can decide arbitrary rules about
which blocks to extend, and the other players will
be incentivized to adapt their strategies accordingly
(or, perhaps more realistically, to leave the game).

22 Assuming a reasonably reliable network. Honest miners
mine and send out their blocks at the start of each time-step.
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Moreover, P can prevent certain transactions from
ever getting into the blockchain, by refusing to ex-
tend blocks which contain these transactions — thus,
P can mine multiple blocks per time step without
ever being punished. This attack was first analyzed
by [28] in the context of Bitcoin, which suffers from
the same problem (with respect to computing power
rather than space).

It may seem unrealistic that a single party would
control more than half of the total space that be-
longs to active miners in a widely adopted currency.
A more realistic concern could be that a large group
of miners (in a mining pool) may acquire more half
of the total space. However, under the assumption
that each miner is an individual strategic agent, we
consider it unlikely that such a mining pool could do
much damage: for this, a large group of self-interested
and relatively anonymous agents would have to co-
ordinate and trust each other throughout the dura-
tion of an attack. In particular, each rational miner
in the pool must be convinced that he will get his
share of the attack profits, and it seems highly un-
likely that a large group of anonymous people would
all trust each other so. Moreover, once such an at-
tack is detected by the community, the value of the
currency will plummet, so the expected monetary
benefit to attackers would be arguably low or even
negative. The improbableness of a 51% attack by a
mining pool is supported by Bitcoin’s history: when-
ever mining pools (e.g. ghash.io) have approached
50% of Bitcoin computing power, self-interested min-
ers quickly started leaving the mining pool in order
to avoid destabilizing the currency.

8 Conclusion

We have presented SpaceMint, a cryptocurrency
that uses efficient proofs of space instead of energy-
intensive proofs of work to maintain a public transac-
tion ledger. We have constructed a variant of proofs
of space that is suitable for the cryptocurrency set-
ting, and proposed a novel block chain structure and
new transaction types to address some of the issues of
other existing cryptocurrencies. We have also shown
that maintaining a public ledger could be much more



efficient using proofs of space using our prototype.
Finally, we have presented the first formal modeling
of cryptocurrency as an extensive game, and our anal-
ysis shows that honest mining satisfies strong equilib-
rium properties in said model, including resistance to
selfish mining.
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A Proof-of-Space parameters

The two PoSpace constructed in [I7] have the fol-
lowing efficiency/security properties. Below thash de-
notes the time required to evaluate the underlying
hash function hash : {0,1}* — {0,1}¥ on inputs of
length 2L (to hash an input of length m - L takes
time 1 - thash by using Merkle-Damgard), For a given
number 7 of nodes of the underlying graph, an honest
prover P must dedicate
N=2-n-L

bits of storage (n - L for the labels, and almost the
same for the values required to efficiently open the

Merkle tree commitment). A typical value for L is
256, then N = 512 - n.

Proposition A.1 ([I7] first construction). There ex-
ists a PoSpace in the random oracle model with the
following properties:

o Efficiency: The verifier runs in time O(L) dur-
ing initialization (it just has to send a nonce
and store a commitment) and O(k - log(n) -
loglog(n) - thash) during execution (it must check
O(k-loglog(n)) openings of the Merkle tree com-
mitment, the parameter k is discussed below).
The (honest) prover runs in time O(n-loglog(n)-
thash) during initialization and in O(k - log(n) -
loglog(n) - thash) during execution.

e Security: Let kcy,k, denote the parameter k
we set for the proof execution and commitment
verification phase. If a (potentially cheating)
prover P passes the commitment verification
phase, then with probability 1 — 2°% <) the fol-
lowing holds: If P can make V accept in the

proof execution phase with probability = 2~©%r)
then P either stores O(N) bits (i.e., almost
as much as an honest prover) or runs in time
O(n-loglog(n) - thash) (i.e., the time required for
initialization).

To use the above PoSpace in our construction, we
have to set k., = A where X is a statistical security
parameter, and k, = ©(1) can be a constant.

Proposition A.2 ([I7] second construction). There
exists a PoSpace in the random oracle model with the
following properties:

e Efficiency: The verifier runs in time O(L) dur-
ing initialization and in O(k -log(n) - thash) dur-
ing execution. The (honest) prover runs in time
O(n - thash) during initialization and in O(k -
log(n) - thash) during execution.

e Security: Let k., k, denote the parameter k we
set for the proof execution and commitment veri-
fication phase. If a (potentially cheating) prover
passes the commitment verification phase, then
with probability 1 — 20(=kev/108(n) the following
holds: If P can make V accept in in the proof
ezecution phase with probability = 2~=°%»)  then
P either stores Q(nL/log(n)) = Q(N/log(n))
bits or requires Q(N/log(n)) space and Q(thash -
n/log(n)) time during execution.

To use the above PoSpace in our construction, we
have to set k., = A -log(n) where X is a statistical
security parameter, and k, = ©(1) can be a constant.

B Burstcoin

In this section we give some more details on the effi-
ciency and security issues of Burstcoin as outlined in
We not only discuss Burstcoin because it is rele-
vant related work; looking at its design also illustrates
some of the challenges that we had to solve when de-
signing a proof-of-space-based cryptocurrency.

The only specification of the Burstcoin mining
process that we were able to find is the web-
page http://burstcoin.info/introl which unfor-
tunately is rather informal. The description below is
thus only our best guess on how exactly the mining
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process in Burstcoin works, mostly based on the fig-
ure http://burstcoin.info/assets/img/flow.png.

Burstcoin uses the Shabal256 hash function, which
below we will denote with H(:). To mine Burstcoin,
a miner first initializes his disk space as follows: he
picks a nonce p and an account identifier (which is
a hash of a public key) Id, and then computes itera-
tively 4097 values zg, z1, ... € {0,1}?% as

xg = H(Id, p) (6)

1=0,...,4095 .

., S4095 Where s; = x; @
T4006- Each block s; is called a “scoop”, and the
4096 scoops together are called a “plot”. The miner
is supposed to store as many plots as he can (using
different nonces) until all the dedicated space is filled.
To compute a plot, one must hash 4096 - % ~ 8
million 256-bit blockﬂ In the following we assume
for simplicity that there is just one plot s, . .

and

Ti+1 = H(xini_lH [ on) for

The miner then stores s, ..

-5 54095-

Efficiency. Once every few minutes, a new block
gets added to the hash chain. At this point the
miner can compute a designated (public) index ¢ €
{0,...,4095} and must look up the value s;. This
s; then determines if the miner “wins” and thus can
add the next block to the blockchain?i Note that
this requires accessing a constant fraction of the en-
tire dedicated disk space (i.e. one block per plot, or
0.024%) every time a new block gets mined. More-
over, in order to verify that a miner “won” and can
add a block, it is necessary to recompute the entire
plot from the initial inputs (Id,u), which, as men-
tioned above, involves hashing over 8 - 10° blocks. In
comparison, in SpaceMint, the number of bits read
from the disk is only logarithmic in the size of the
dedicated space, and verification also just requires a
logarithmic number of hashes. (In Bitcoin, verifica-
tion requires just a single hash.)

23Note that in equation @, a freshly computed block z;
is prepended to the previous input. This is important as
Shabal256 is an iterated hash function: appending instead of
prepending would bring the number of hashes required to com-
pute a plot down to linear (instead of quadratic) in the length
of the plot, but at the same time would allow for much more
dramatic time-memory trade-offs than the ones outlined be-
low.

24The details of how to add a block to the chain are irrelevant
for this discussion, and hence we omit them.

Time-memory trade-offs. We observe that
Burstcoin allows for a simple time-memory trade-
off: instead of storing an entire plot sq, ..., S4095,
a miner can initially compute and store only the
value x4096- The miner then re-computes the re-
quired scoop s; at a given time step, but only if 4
is sufficiently small (say, ¢ < 10). This would re-
quire hashing only at most 50 blockﬁ Thus, the
miner will get a shot at adding a block only at
10/4095 ~ 0.25% of the time slots, but now also only
requires a 1/4095 ~ 0.025% fraction of the space that
would be needed to store an entire plot. Using this
strategy, given some fixed amount of disk space, it is
possible to mine 0.25/0.025 = 10 times faster than
the honest mining algorithm, at the price of having
to compute a modest number of extra hashes. More
generally, using this type of mining strategy, it is pos-
sible to mine t times faster at the price of having to
hash #2/2 blocks with every block read from the disk.

Given that application-specific integrated circuits
(ASICs) can compute in the order of millions of
hashes per second per dollar invested@ such time-
memory trade-offs seem practica We remark that
the creators of Burstcoin discuss the possibility of
mining their currency in a pure proof-of-work style,
though they come to a different conclusion from ours:

Technically, this mining process can be
mined POW-style, however mining it as
intended will yield thousands of times the
hashrate, and your hardware will sit idle
most of the time. Continuously hashing un-
til a block is found is unnecessary, as wait-
ing long enough will cause any mnonce to
eventually become valid.

—http://burstcoin.info/intro
Grinding and extending multiple chains. The

two main challenges we had to overcome when de-
signing SpaceMint were attacks based on grinding

25To be precise, the miner computes zq, . .., z; and sets s; =
T; D T4096-

26nttps://en.bitcoin.it/wiki/
Mining _hardware_comparison

ZTHowever, we remark that currently, ASICs exist primarily
for the SHA256 hash function used in Bitcoin (and not for the

more unconventional Shabal256 used in Burstcoin).

27


http://burstcoin.info/assets/img/flow.png
http://burstcoin.info/intro
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison

and mining multiple chains. (The problem with
time-memory trade-offs was solved in the Proofs of
Space [I7] paper upon which this work builds.)

Due to lack of documentation of the Burstcoin min-
ing process, we do not know to what extent Burst-
coin can be attacked using grinding or by extend-
ing multiple chains. From our understanding of the
Burstcoin mining process, it seems especially cru-
cial to avoid grinding of the index of the scoop to
be used in a given round: otherwise, a malicious
miner could “hijack” the chain forever (i.e. mine
all future blocks) using only a very small fraction
of the total dedicated space, as follows. The fig-
ure http://burstcoin.info/assets/img/flow.png
indicates that this scoop index is computed from
two values PrevGenSig and PrevBlkGenerator. The
naming indicates that PrevGenSig corresponds to the
value NewGenSig used in the previous block. This
value is computed deterministically and thus is “un-
grindable”. We were not able to find details on the
functionality of PrevBlkGenerator, so we do not know
whether it can be grinded; however, it seems possible
that this value serves to bind transactions to proofs
within a given block, and thus can be grinded (by
trying different sets of transactions to include in a
block).

C Challenge Grinding Attacks

In this section we describe the challenge grinding
attack (which was communicated to us by Andrew
Miller [30]), and our solution.

Recall (from §4.7) that the quality of a block chain
in SpaceMint is defined by:

QualityPC(pq, ..., p;) = 2 log(N(v;)) - A7 . (7)
j=1

Intuitively, this is the sum of logarithms of qualities
of blocks in the chain, with the discount factor A
ensuring that more recent blocks weighted slightly
more. For the purpose of this section, the factor A
is unimportant, so we omit it. Then, notice that an
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equivalent measure is the product of block qualities:

1
QualityPC* (o, ..., i) = | [ N(vy) - (8)
j=1
A natural question is: why take the product, rather
than the sum? It turns out that there is a possible
attack in the case that QualityPC takes a sum, i.e.

QualityPC™ (g, ..., ;) = Z N(v;) , 9)
=1

which is mitigated by instead taking a product. In a
nutshell, the basic intuition for this is that the geo-
metric mean is more robust against outliers than the
arithmetic mean.

We now describe the attack against the sum-based
quality function.

Challenge grinding attack. To use a space com-
mitment (pk,v) for computing a proof for block i,
we must use the challenge computed as a hash of
block i — A as ¢ := hash(pk, p;—a). It is important
that A is at least the number of time-steps required
to reach consensus with overwhelming probability, so
that each miner (i.e., each public key) gets exactly
one chance at mining a block at time-step ¢. Thus, it
is not possible to get an unfair advantage by spend-
ing computational power to “try many different chal-
lenges and pick the best one”. In a Challenge grind-
ing attack, the adversary does exactly this, by pro-
ducing long enough (> A) sequences of blocks that
he controls his own future challenges.

Let A be a challenge grinding adversary who con-
trols space of size N. A splits up his space into as
many separate space commitments as possible@ let
(pk1,71),- -, (Pkm,¥m) be his space commitments,
which together comprise space N = Z;’;l N,;.

If this adversary “honestly” mined ¢ consecutive
blocks (by taking the highest-quality proof ¢; among
all his m space commitments, at each time-step %),
then the expected quality of the resulting chain is

t
o] = Y EN@)] =t N
i=1

according to the sum-based quality function @D (Re-

E[QualityPC* (¢, . . .

28Subject to the minimum size requirement for a space com-
mitment.
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call that by construction, the expectation of N(v;) is
N, where v; is the quality of proof ¢;.)

In fact, for a sum-based quality function, A can
do significantly better than this for all sufficiently
long chains. First, he partitions the block indices
{1,...,t} into disjoint pairs (¢,7 + A). For simplicity,
suppose t = 2A and let the pairs be

(L,1+A), ..., (A2A).

Then, for each pair (i,7 + A) and every space com-
mitment (pk;,7;), A computes a challenge ¢; ; :=
hash(pk;, ¢} ;), where ; ; is the proof corresponding
to commitment (pk;,v;) at time-step 4. At this point,
A has computed m possible challenges ¢; 1,...,¢im
for each time-step i + A. He can choose the best,
cfe{ci1,---,C m}, such that the quality of his block
at position i+ A is maximized. Informally, this is like
having just one challenge, but m times more space.

Now, for a pair (i,% + A), the expected quality of
A’s proof in time-step i + A is increased to N - m.
Note that this strategy actually decreases the ex-
pected quality in the earlier time-step ¢ compared
to the honest strategy, since instead of optimizing for
quality at position i, A optimizes for quality at posi-
tion ¢+ A: the expected quality A’s proof in time-step
i is decreased to N /m.

With this approach, A generates a chain where half
the blocks have quality around N - m and the other
half N /m, so the expected chain quality is

Al = D EING)

(N/m)+ N -m
2
> tmN/2.

Summing up, A just using space N that was initial-
ized once, generated a chain of quality that would
require total space over mN /2 if generated by honest
mining. This m/2 factor can be even further im-
proved by optimizing over blocks separated not just
by A positions, but by k- A positions: e.g. blocks 7
and i + A can be used to generate ¢2 challenges and
pick the best proof for block i + 2A, yielding a factor
m?/3 improvement@

E[QualityPCT (¢}, . ..

x .

29More generally, we can get m*/(k + 1) for any k € N. The
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If the QualityPC function is product-based (or
equivalently, based on the sum of logarithms), as in
, the attack outlined above no longer works. The
reason is that the (expected) quality of our two blocks
jand j+Ais N/t and N-t, respectively, and thus the
product is N? (which is the same we get in the hon-
est mining process, where each block has expected
quality N).

Although we have eliminated the specific space-
grinding attack described above, we remark that it
is still possible to get some minor advantage by chal-
lenge grinding even with a product-based measure
of quality. Recall that the attack generated m chal-
lenges at block ¢ (using the m space commitments),
and then picked the challenge which gave the best
quality for block i + A. Instead of only doing this,
an adversary could check which challenge (among the
m candidates) gives the highest value for the prod-
uct of block qualities at position j and j + A. Using
this strategy, the expected quality of these blocks is
N? .log(m), which is a factor log(m) higher than the
N? we get by honest mining (but still much smaller
than the m/2 factor in the original attack).

Before we explain how to solve the above problem,
let us observe that the reason that challenge grinding
is possible in the first place is the variance in the
quality of a proof: for a space commitment (pk,~),
the expected quality of a proof is IV,, but for any
a > 1, the quality will be higher than o - N, with
probability roughly 1/«. This variance is necessary as
we need the expected quality of the best proof found
amongst many commitments (pk1,71), .- ., (Pkm, Ym)
to be the sum »" | N, of all the spaces.

We can decrease the advantage of challenge grind-
ing (over honestly mining) by lowering the variance
of the quality of the proofs. As mentioned above, the
variance of proof quality is an important feature that
we cannot simply remove; however, we can cluster
proofs together so that the advantage that challenge
grinding gives “amortizes” over many proofs. One
way to use the same challenge for several consecutive
blocks. Concretely, we introduce a new parameter §
which specifies how many blocks are generated using
the same challenge. The challenge for block ¢ is no

computational cost of the attack grows as t¥.



longer computed as
¢ := hash(pk, p;—a)
but as

¢ := hash (pkv L)01'—A—(i mod 5))
Now, a challenge grinding adversary must try to “op-
timize” § proofs at once, which will give a much lower
advantage than being able to “grind” the proof for
every block individually. We suggest to set § = 10,
which seems more than sufficient to prevent challenge
grinding (we do not recommend using much larger 9,
since that can make generating long forks easier, as
we discuss in Appendix @
[AK]minspace should be maybe 1007

D Parameter setting and inter-
play

We have defined several parameters which control the
efficiency and security of SpaceMint. Some of those
parameters cannot simply be seen as security param-
eters (where increasing the parameter means more se-
curity at the price of decreased efficiency) as there’s
a delicate interplay between them, where changing
some parameter increases some security property, at
the prize of decreasing another. We discuss the im-
portance of the most important parameters on the
most relevant attacks below, a summarized view is
given in Table|l} The parameters are

time[1] which specifies the time (in minutes) between
blocks.

5[10] which specifies for how many blocks the same
challenge is used.

A[50] which specifies that the challenge for a block
is computed as the hash of the block at least A
blocks in the past (and at most A + 4).

AJ0.99999] specifies how the weight of blocks — when
computing the quality of a chain — degrades for
older blocks Pl

30With this A the weight drops by 50% every 69314 blocks,
or 48 days (as A%9314 ~ 0.5).
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minspace[100] specifies (in GB) the minimal size of
space one must dedicate to start mining.

where the number in the [-] brackets indicates the
value for the parameter as set in our suggested in-
stantiation.

Challenge grinding. We discussed challenge
grinding in detail in Appendix [C] and how setting
the parameter ¢ sufficiently high prevents this at-
tack. We also discussed how challenge grinding be-
comes more successful the more space commitments
one can generate given some fixed space, thus set-
ting the minspace parameter up also makes the attack
harder.

Extending multiple chains. We must ensure
that for a miner it’s rational to only announce blocks
extending one chain, and this chain should be the
chain of highest quality known to the miner. Ensur-
ing that a miner only announces one block is done by
penaltizing miners otherwise If we have fork,
we assume that with high probability this penalising
is sufficient to make sure that one of them will “die”
within at most A blocks, as otherwise miners will get
different challenges for the two chains, which (assum-
ing the miners are rational) will slow down consensus.
Clearly, increasing A makes this event less likely (at
an exponential rate).

Short forks by space reuse. The security of
SpaceMint relies on the assumption that it’s not pos-
sible to reuse space for mining. As we can compute
the challenges for up to A + § blocks in advance, for
reusing space even just twice, one would have to in-
stantiate the space in less than

time(A + J) = 1(50 + 10)/2 = 30 minutes
This is far off from the 200 minutes required to

instantiate 100GB of space, which is the minimum
we suggest (cf. Figure [6).

S

Long forks by space reuse. The situation is dif-
ferent if we consider an adversary who wants to come
up with long range fork (and not extend the current
chain) because (as specified in Equation ) more re-
cent blocks contribute more to the quality of a chain.
We shortly sketch how this attacks works: Let cur



Table 1:

A summary on how different parameters influence different security properties of SpaceMint as

discussed in Appendix @ An arrow 1 (]) means increasing (decreasing) this parameter will increase the
security against the corresponding attack, { means that increasing this parameter has a major influence on
the security against this attack. The 1’ arrows do not refer directly to minspace, but rather the time required
to initialise the minimal allowed space, which scales linear in minspace as shown in Figure |4l Decreasing time
makes the scheme only more secure, but setting it very low will force miners to dedicate more computation.
Also setting minspace up will make the scheme more secure, but a high minspace will lower its usability, as
parties with small space will not be able to participate.

parameters time A ) A minspace
range,/unit N*/min | NT | Nt | [0,1] N*/GB
suggested 1 50 | 10 | 0.99999 100

’ attacks \ \ \ \ \ ‘

Challenge Grinding - - i) - 1
Extending Multiple Chains - ) - - -
Short Forks by Space Reuse ! ! ! - 1
Long Forks by Space Reuse ! ! J ) 1’
Long Forks by Space Decrease - - - J -

denote the index of the current block. An adver-
sary first extends the current chain up to some block
cur + low by simply using the space he has available
(so, the low new blocks will be of low quality com-
pared to the actual chain). Then the adversary ex-
tends this chain to block cur + low + high with high
quality blocks, i.e., somewhat better than the blocks
of the actual chain. As the adversary has less space
than the total space contributed by all miners, he
must re-instantiate the space many times while gen-
erating these blocks. This will take a lot of time, but
the advertsry has time(low + high) minutes to gener-
ate these high blocks, so it will be possible by setting
low high enough.

How large high must be depends on how fast the in-
fluence of blocks degrades as specified by the parame-
ter A, concretely, it will be in the order of 1/(1 fA)E
Every time the adversary re-initalizes its space, it
can generate challenges for the next A + § blocks.
Assuming re-initialization takes about Tinit minutes,
generating a chain while re-sampling even just once
for every block (which will allow to generate blocks

31 As the contribution of blocks that far in the past is just a
small fraction (~ 1/e) of the most recent blocks.
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that look as if they had been mined with twice the
space that is available to the adversary, this will only
be sufficient if the adversary has more than half the
space of the honest miners available) is by a factor
Tinit

p= (A + §)time
slower than the speed at which the actual chain
grows, which means we must set

. 1 Tinit

low ~ high/5 ~ T3 * (A + sytime

to finish the fork on time. For minspace = 100(GB)
we have Tinit ~ 200 so low ~ 100000-200/60 minutes.
Thus, even with our rough analysis, this implies that
a fork would have to go back way over half a year.
Of course even such a long fork constitutes an attack,
and thus some mechanisms to handle very long forks
must be in place. This could either be some type of
checkpoints, but we believe that for such long forks
relying on weak subjectivitﬁ should be sufficient.

Long forks by space decrease. The above at-
tack assumes A < 1. If A = 1, then we have no

32https://blog.ethereum.org/2014/11/25/proof-stake-
learned-love-weak-subjectivity/
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degradation to the contribution of chain quality as
blocks are further in the past. This is problematic as
it allows to generate a chain, stating from the genesis
block, using space that is only as large as the average
amount space that has been available by the miners
over the entire lifetime of the currency, which can be
much lower than the currently used space. But then,
also in this case we could rely on weak subjectivity.

Overtaking the chain. The adversary may try
to only extend his own blocks, and attempt to take
overtake the main chain. In this case, the adversary
will only get rewarded for those blocks if the quality of
his chain eventually becomes greater than the quality
of the chain mined by the rest of the network. We
say that the attack is successful if the blocks thus
mined by the adversary eventually become part of
the highest-quality chain.

A successful overtake would enable an adversary to
do a double-spending attack (by putting a transaction
transferring money to someone in the “main” block
chain, and later overwriting the transaction when his
self-mined block chain overtakes the main one). A
successful long-fork attack is also a necessary compo-
nent of a selfish mining attack (described in .

Recall the quality of a block (from §4.6)):
Quality(pk,v, ¢, a) = Dy, (hash(a))
where Dy (hash(a)) is defined as

DN(hash(a)) = (hash(a)/QL)l/N

We model the hash function as a random ora-
cle, so hash(a)/2" is distributed as r’/2 for random
7"« {0,1}L. This distribution is statistically close
to randomly sampling r < [0, 1]: that is,

A <{T'//2L}'r"<f{0,1}L7 {T}T‘H[O,l]) - 2_L

where A denotes statistical distance. Henceforth, our
analysis considers only the latter distribution, which
we denote by DY
* 1/N
DY ~{r }rﬁ[o,l]

Let (®0,...,%nm) be a proof chain, where each
proof sub-block ¢, contains a proof (pk;,v;,c;,a;)
and the quality of the jth block is v; «— DR . The
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quality of a block chain (cf. is given by
M
sonr) = ) log(N*(v;)) - AM

j=1
where A € [0, 1] and N* is defined as
N*(v) = min{N € N : Pr [v<w]>=1/2}. (10)

w«—D

QualityPC(¢o, - - .

Lemma D.1. N*(v) = —1/log(v).

Proof. By definition of D%, increasing N means
Pr,. D¥ [v < w] increases. Therefore, implies

N*(v) =N s.t. Pr [v<w]=1/2
weD¥

Also by definition of D%, it holds that

Pr [v<w]= Pr [v<r/V]
w«D¥% r<[0,1]
= Pr [V <
rh[g,u[v ]

Setting the above probability to 1/2 and solving for
N gives N = —1/log(v). The claim follows. O

Suppose, without loss of generality, that the adver-
sary begins his long-fork attack at time 0. Let N,q,
be the amount of space the adversary has, and let
Nhonest be the amount of space the rest of the net-
work has. For any M € N, let & denote the event
that after M blocks, the adversary’s block chain is of
higher quality than the honest miners’ block chain.
Then, by definition of QualityPC, Pr[&/] equals

M
Pr [Z (108 (W*(25)) — log (N*(v)) ) - AM 7 > 01 :

j=1

(11)
where 7;,v; are random variables representing the
quality of the jth block of the adversary and the net-
work respectively, and the probability is taken over
v; and v;. Using Claim to substitute for N*(-)
and rearranging, we obtain that Pr[&y] equals

M

Pr lz (log(—log(v;)) — log(— log(;))) - AM~7 > 01

j=1

(12)

For j € [M], we define new random variables diff
and difF?’M as follows:

diff; = log(~ log(v;)) — log(~ log 8;))



Table 2: Bounding the probability of a successful overtake of the chain:
p is the probability of a successful overtake, £ is the adversary’s proportion of the network disk space, and

the tabulated values are fork length (in blocks).

A = 0.99999 A = 0.99998 A = 0.99997
é— \ D 2—8 9—16 9—32 9—64 9—128 9—8 9—16 2—32 9—64 9—128 2—8 2—16 2—32 9—64 9—128
0.1 3 5 10 19 37 3 5 10 19 37 3 5 10 19 37
0.25 10 19 37 74 148 10 19 37 74 148 10 19 37 74 148
0.33 24 47 93 186 371 24 47 93 186 373 24 A7 93 186 374
0.4 68 136 271 543 1092 68 136 272 546 1104 68 136 273 549 1116
0.45 277 554 1114 2254 4614 277 557 1127 2307 4852 278 561 1140 2365 5130

diff M = diff; - AM

Note that both diff; and diff;-\’M have support [—1, 1].
We can now write

M

D diffM >0

Pr[éy] = Pr [ ] ) (13)

=1
Theorem D.2.
M-1 2
Prléy] <exp | -5 -E[diffy]? - (J;) A2J>

Proof. Applying a Hoeffding bound to the right-hand
side of , we obtain:
2
e
( E | diff, M]) (14)

By definition of diff; and diff;»\’M,

M

2

Jj=1

1

Pr[&y] < exp 5

E [difff’M] — AM=T . E[diff;]

= AM=J . E[diff,]
where the second equality follows from the fact that
the diff; are identically distributed for all j. Substi-
tuting this expression into and using linearity

of expectation, we obtain the inequality given in the
theorem statement. O

The values in Table |2| were calculated by using
Mathematica to solve (for M) the expression given
in Theorem [D.2]

Remark. The dynamics of long-fork attacks become
slightly different if there is more than one (indepen-
dent) adversarial party. In this case, the probabilities
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shown in Table [2] are still accurate as long as no ad-
versarial party owns more space than all the honest
parties combined, even if the sum of the space owned
by the adversarial parties is greater than 50% of total
space.

E Modeling synchrony delays

For simplicity, the SpaceMint game, as presented
above, models the mining process as if players had
perfectly synchronized clocks and there were no net-
work delays or errors. However, our analysis can be
extended to model network unreliability and asyn-
chrony of clocks. We can prove that honest mining
is an e-sequential Nash equilibrium where the value
of € depends on a network reliability parameter and
a synchrony parameter. As long as network delays
are small and players’ clocks are “approximately” in
sync, € is also small. A more formal statement and
proof sketch are given below.

Definition E.1 (Augmented SpaceMint game). Let
II = {Init, Chal, Ans, Vrfy} be a proof of space. For
any number of players N € N, any number of time
steps K € N, any consensus-delay ¥ € N, and any
reward function p: N — N, the extensive game

t%’}}(,p = <NaHa fC7f7ﬂ>

is defined almost exactly like SpaceMintyy x ,, except
with two additional parameters:

1. n € [0,1], the network reliability parameter,
which models the probability of network failure:
specifically, the probability that a player tries to
announce a block in a time-step j, but some or

AugSpaceMin




all other players do not receive it in time-step 7,
due to network unreliability;

2. v, the synchrony parameter, which models the
probability (for any distinct i,i' € [N]) that a
block announced by player i in time-step j will
not be seen by player i’ in the same time-step,
due to clock asynchrony.

For a probability p, let Ber, be the Bernoulli dis-
tribution with success probability p. Let Ber;jv be
the distribution of N-tuples where each element
is sampled independently from Ber,. The game
AugSpaceMintf;'y - differs from AugSpaceMinty f ,
(only) as follows:

o At each time-step j € [K], in addition to an-
nouncing the beacon value, the Chance player
samples 2N bits as follows:

o (pN ul N
b7 = (b1 ;,..., b} ;) < Beri_,
U _ (v v N
bY = (b7, .-, 0% ;) < Beri_,

e The information sets are oblivious to the bits

b?j,b;’] Formally, the equivalence relation ~;

is defined inductively as follows (we write [h]; to
denote the equivalence class of h under ~;):
- [0): = {0}, that is, the empty sequence is
equivalent only to itself. o
- [((713A1)7 cee (‘J,Na‘AN)a (a’Ca bna bv))]z =
{(@T A, (T A, (G, 57, 57)) € B
Ti=T.AA; = A} Aac = ap
A i (A = A v b, = 0) ]
[( T17‘A1 (TN7‘AN)7(QC7bn75U))7
(T D), (T, A, (g, 87, 57)) ) | =
K3

{ (h” 71/7 ‘A‘”) ) (

( ((J-/llll ; A/II

‘J';/Vv'A/]/V)v (a'gv gﬂnv B’//v))’

h~i W' ATy =T AT =T
ANA=A,ANAL = AT Nae =al A ap = al
A Vi £,

i

A-/:A/-’,A(’-—
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( l/l AII/) ( n bl//'r] bl//v))) c H:

where h and h" are histories of equal length
and j = |h| + 1.
e For any history h, let A*(h) be the set of all
blocks announced by any player i in history h in
a time-step j such that b/, = by, = 1:
Jie [N],A" s.t. (,B)e A’ and
B : player i took action (-, A’) at
time-step j, and b ; = b7 ; =1

A*(h) =

Let blocks™(h) denote the sequence of “winning
blocks” at any given history h:
blocks*(h) = argmax (QualityPC(B,&(h))).
Be(A%* (h))"

Let blocks} (h) denote the (th block in the chain.
Let winj(h) be the player who announced the
winning block blocks; (h) for index éﬁ

e The players’ utility functions are defined as fol-
lows: for a terminal history h of length K, the
utility of player i is given by u;(h) =

D0 Giint () - onee(i; h) - p(blocksf (1)),
le[K—T]

where 0 j, one; are defined as in Definition[7.13,

Theorem E.2. Let II = {Init, Chal, Ans, Vrfy} be a
proof of space. Recall the definition of (&, ) from
Theorem [7.16. In the original formulation of the
SpaceMint game, it was possible to associate a unique
blockchain with each information set, and the defini-
tion of (a4, [i) depended on this fact. In the augmented
SpaceMint game, this property no longer holds, be-
cause sometimes a player will be unaware of a block
which was announced by another player in the pre-
ceding time-step. Nonetheless, it is a well-defined
strategy for the players to compute their strategies c;
according to (&, i) as if they were playing in the origi-
nal SpaceMint game instead of the augmented game.
For any number of players N, any number of time
steps K € N, and any reward function p : N — N,
let (@*, [i*) be the assessment of AugSpaceMint]}", K.p
defined in the above-described way.

33We assume that the winning block is unique at each time-
step: that is, Quality imposes a total order on blocks. This can
be achieved by breaking ties between blocks in an arbitrary
way. Note that it is not possible for two different players to
announce exactly the same (valid) block, because each block
contains the miner’s identity.



Let
max;e[n] i

Dlie[n] Li

be the mazimum fraction of space possessed by a sin-
gle player, and suppose & < 0.5. Then (&*, i*) is an
e-sequential Nash equilibrium of AugSpaceMinty'y |

where

e=mn+v+exp —22 d|fF1 (Z A2J> ,

A is the discount factor defined in 4.7 and diff; is
defined as in 0

€=

Proof sketch. Consider the bits b ;,...,b% ; and
7 jo-- -, b} ; that are sampled by the Chance player
in each time-step j. In any given time-step j, by
definition, player i’s utility is the same as in the
original (i.e. not augmented) SpaceMint game if
b’7 = by ; =1, and zero otherwise. For i’ # i, player
s utihty is the same as in the original SpaceMint
game if bZ i = = b;; = 1, and increased on expectation
otherwise. Since we are seeking to upper-bound the
expected utility of deviations from the equilibrium
strategy, we will disregard the impact of b 320
when analyzing the strategy of player i, and simply
assume by, ;= bj; ; = 1 for all i’ # 7 and all j.

The values b i g0 bf J are sampled independently for
different time-steps j, and only affect the utility of the
player in the current time-step j. Hence, player ¢’s
strategy in time step j need not depend on the values
b} 5, by for j' # j. We conclude that when analyz-
ing the strategy of any given player ¢ at any given
time-step j, we need only consider the two variables
b ;.07 ;. The “bad cases” are b} ; = 0 and by, = 0,
as these events cause a decrease in player i’s utility
(compared to the original SpaceMint game). Recall
that Pr[b/; = 0] = 7 and Pr[b}; = 0] = v by defini-
tion. Applying a union bound over the probabilities
of these bad events, and using Theorem we ob-

tain the required result. O

Remark. Definition [El models the case when net-
work delays and synchrony issues only cause block
announcements to be delayed by one time-step. We
remark that our analysis extends straightforwardly to
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the cases when the delays are longer than one time-
step, or have variable length, or even cause block
announcements to be permanently suppressed rather
than delayed.
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